editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
Select[Prime[Range[5000]], Union[PrimeOmega[#+{4, 16, 64, 256, 1024}]] == {2}&] (* Harvey P. Dale, Nov 28 2017 *)
approved
editing
editing
approved
Select[Prime[Range[5000]], Union[PrimeOmega[#+{4, 16, 64, 256, 1024}]]=={2}&] (* Harvey P. Dale, Nov 28 2017 *)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
K. D. Bajpai, <a href="/A241493/b241493.txt">Table of n, a(n) for n = 1..10000</a>
allocated for K. D. Bajpai
Primes p such that p + 4, p + 16, p + 64, p + 256 and p + 1024 are all semiprimes.
1627, 2917, 3583, 4603, 5581, 6367, 6379, 8263, 9697, 12517, 12763, 13339, 14197, 15289, 16339, 16993, 17539, 17737, 18199, 19267, 19531, 20023, 28057, 28879, 29587, 32647, 33427, 34033, 34537, 35353, 35617, 37039, 37087, 37657, 37663, 42337, 43093, 47533, 48049
1,1
The constants in the definition (4, 16, 64, 256 and 1024 ) are in geometric progression.
1627 is prime and appears in the sequence because 1627+4 = 1631 = 7*233, 1627+16 = 1643 = 31*53, 1627+64 = 1691 = 19*89, 1627+256 = 1883 = 7*269 and 1627+1024 = 2651 = 11*241, which are all semiprime.
with(numtheory): KD:= proc() local a, b, d, e, f, k; k:=ithprime(n); a:=bigomega(k+4); b:=bigomega(k+16); d:=bigomega(k+64); e:=bigomega(k+256); f:=bigomega(k+1024); if a=2 and b=2 and d=2 and e=2 and f=2 then RETURN (k); fi; end: seq(KD(), n=1..10000);
KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, AppendTo[KD, t]], {n, 10000}]; KD
(* For the b-file *) c = 0; Do[t = Prime[n]; If[PrimeOmega[t + 4] == 2 && PrimeOmega[t + 16] == 2 && PrimeOmega[t + 64] == 2 && PrimeOmega[t + 256] == 2 && PrimeOmega[t + 1024] == 2, c++; Print[c, " ", t]], {n, 1, 5*10^6}];
allocated
nonn,new
K. D. Bajpai, Apr 24 2014
approved
editing
allocated for K. D. Bajpai
allocated
approved