[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241483
Primes p such that p+2, p+4, p+6, p+8, p+10 and p+12 are all semiprime.
7
1381, 3089, 10399, 49081, 53759, 63949, 76801, 98491, 107509, 109397, 113341, 143093, 182747, 204331, 209477, 239087, 252949, 255989, 313409, 396983, 426287, 500341, 602779, 677333, 812281, 832801, 1516531, 1574939, 1599151, 1619507, 1678639, 1866737, 2046449
OFFSET
1,1
LINKS
EXAMPLE
1381 is prime and appears in the sequence because 1381+2 = 1383 = 3*461, 1381+4 = 1385 = 5*277, 1381+6 = 1387 = 19*73, 1381+8 = 1389 = 3*463, 1381+10 = 1391 = 13*107 and 1381+12 = 1393 = 7*199, which are all semiprime.
MAPLE
with(numtheory): KD:= proc() local a, b, d, e, f, g, k; k:=ithprime(n); a:=bigomega(k+2); b:=bigomega(k+4); d:=bigomega(k+6); e:=bigomega(k+8); f:=bigomega(k+10); g:=bigomega(k+12); if a=2 and b=2 and d=2 and e=2 and f=2 and g=2then RETURN (k); fi; end: seq(KD(), n=1..200000);
MATHEMATICA
KD = {}; Do[t = Prime[n]; If[PrimeOmega[t + 2] == 2 && PrimeOmega[t + 4] == 2 && PrimeOmega[t + 6] == 2 && PrimeOmega[t + 8] == 2 && PrimeOmega[t + 10] == 2 && PrimeOmega[t + 12] == 2, AppendTo[KD, t]], {n, 200000}]; KD
Select[Prime[Range[155000]], Union[PrimeOmega/@(#+2Range[6])]=={2}&] (* Harvey P. Dale, Dec 13 2018 *)
PROG
(PARI) is(n)=if(n%3==1, isprime((n+2)/3) && isprime((n+8)/3) && bigomega(n+4)==2 && bigomega(n+10)==2, isprime((n+4)\3) && isprime((n+10)\3) && bigomega(n+2)==2 && bigomega(n+8)==2) && isprime(n) && bigomega(n+6)==2 && bigomega(n+12)==2
forprime(p=2, 1e7, if(is(p), print1(p", "))) \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
Sequence in context: A031796 A020406 A277632 * A134671 A161192 A134670
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 23 2014
STATUS
approved