[go: up one dir, main page]

login
Revision History for A223603 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Petersen graph (8,2) coloring a rectangular array: number of 5Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph
(history; published version)
#4 by R. H. Hardin at Sat Mar 23 06:12:14 EDT 2013
STATUS

editing

approved

#3 by R. H. Hardin at Sat Mar 23 06:12:09 EDT 2013
LINKS

R. H. Hardin, <a href="/A223603/b223603.txt">Table of n, a(n) for n = 1..210</a>

#2 by R. H. Hardin at Sat Mar 23 06:11:49 EDT 2013
NAME

allocated for R. H. Hardin

Petersen graph (8,2) coloring a rectangular array: number of 5Xn 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph

DATA

1048576, 40160, 1931968, 47659632, 1807461152, 63079247600, 2400064408240, 90938609732144, 3502184025729312, 135060601994290512, 5225267725656119568, 202291946619229066288, 7836871271932729361344, 303667249235629519756208

OFFSET

1,1

COMMENTS

Row 5 of A223599

FORMULA

Empirical: a(n) = 53*a(n-1) +374*a(n-2) -49281*a(n-3) +168337*a(n-4) +18953770*a(n-5) -135592765*a(n-6) -4018506722*a(n-7) +38351948598*a(n-8) +526425355509*a(n-9) -6247995788825*a(n-10) -44696544056917*a(n-11) +672018817036164*a(n-12) +2439625095672568*a(n-13) -51015250910957358*a(n-14) -74076479025445048*a(n-15) +2845371514245940944*a(n-16) -101151111776030008*a(n-17) -119745692885750334784*a(n-18) +136753869468449758704*a(n-19) +3872580812719758794448*a(n-20) -7900336393914849682208*a(n-21) -97415736700690808391520*a(n-22) +277181005424624672989888*a(n-23) +1918607026870809036988608*a(n-24) -7018687605134326176007808*a(n-25) -29583813723962062148089344*a(n-26) +136135267638358734615001088*a(n-27) +353449062429138527697512448*a(n-28) -2082673221451996449548128256*a(n-29) -3167294004420980789940391936*a(n-30) +25561447594742343434919616512*a(n-31) +19220624893813686502281330688*a(n-32) -254363255978716849635741302784*a(n-33) -43077889432320253843386531840*a(n-34) +2065610230705196722136007311360*a(n-35) -611869355376433765635530162176*a(n-36) -13735449605624441628196649566208*a(n-37) +9470460446052194237483947393024*a(n-38) +74832374656222369766059121049600*a(n-39) -78103053092167370004491719933952*a(n-40) -333196375373544832413565391470592*a(n-41) +462823435221855922222719588892672*a(n-42) +1204538345581769309443391701909504*a(n-43) -2121446352517105569942230355935232*a(n-44) -3489686115260065017811788294520832*a(n-45) +7736167933674865795576682917134336*a(n-46) +7896874136363657884330039883857920*a(n-47) -22708246137511575464946240959021056*a(n-48) -13177852194558039676440426361913344*a(n-49) +53846250174111770796979059918110720*a(n-50) +13519966957331356540752962533720064*a(n-51) -102966371980750600298466431733858304*a(n-52) +721316744394990987103801704448000*a(n-53) +157810807625828720650178914919907328*a(n-54) -34553697631065369192975193234997248*a(n-55) -191773787737447411912344991317360640*a(n-56) +77241888800091488728842956353568768*a(n-57) +181702526658392297572436797007331328*a(n-58) -104412959969421829864586835157581824*a(n-59) -130784502166988791077582920256323584*a(n-60) +98708628283267583534162228587528192*a(n-61) +68486312638776842376465639324778496*a(n-62) -67167764609290716861288017595203584*a(n-63) -23962558422689391133337137627267072*a(n-64) +32616881131758874199190445116882944*a(n-65) +4355396983589155226858169397411840*a(n-66) -10925261504311980936490504777891840*a(n-67) +244984704106217968259546474348544*a(n-68) +2362788076708829828961015586357248*a(n-69) -317326938329004163267124457897984*a(n-70) -290183829846002617980829418127360*a(n-71) +62205167167105726405236668497920*a(n-72) +14789431793187428965929713664000*a(n-73) -3965881151245791007623610368000*a(n-74) for n>75

EXAMPLE

Some solutions for n=3

..0..8..0....4.12.10....4.12..4....4.12..4....4.12.14...12..4.12....4.12.10

.10..8..0....4.12..4...10.12.10....4..5..4...14.12.10...12..4.12...10.12.14

.10..8.10...10.12.10...10.12..4....4..5..6...14.12..4....3..4..5...14.12.14

..0..8.14...14.12..4....4.12.14...13..5..6...14.12.10....5..4..5...10.12.10

.14..8..0...10.12.10...10.12.10....6..5..4...14.12.10....5..4..5...14.12.10

KEYWORD

allocated

nonn

AUTHOR

R. H. Hardin Mar 23 2013

STATUS

approved

editing

#1 by R. H. Hardin at Sat Mar 23 05:57:31 EDT 2013
NAME

allocated for R. H. Hardin

KEYWORD

allocated

STATUS

approved