[go: up one dir, main page]

login
A223599
T(n,k)=Petersen graph (8,2) coloring a rectangular array: number of nXk 0..15 arrays where 0..15 label nodes of a graph with edges 0,1 0,8 8,14 8,10 1,2 1,9 9,15 9,11 2,3 2,10 10,12 3,4 3,11 11,13 4,5 4,12 12,14 5,6 5,13 13,15 6,7 6,14 7,0 7,15 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph
13
16, 48, 256, 144, 256, 4096, 432, 1504, 1376, 65536, 1296, 6736, 16192, 7424, 1048576, 3888, 32768, 122608, 176224, 40160, 16777216, 11664, 156592, 1124064, 2372080, 1931968, 217600, 268435456, 34992, 755200, 9902320, 43725920, 47659632
OFFSET
1,1
COMMENTS
Table starts
............16........48..........144.............432...............1296
...........256.......256.........1504............6736..............32768
..........4096......1376........16192..........122608............1124064
.........65536......7424.......176224.........2372080...........43725920
.......1048576.....40160......1931968........47659632.........1807461152
......16777216....217600.....21308000.......982848688........77164934624
.....268435456...1180256....236213312.....20631729648......3355919411936
....4294967296...6405888...2629972704....438231627440....147579242411936
...68719476736..34782688..29389265856...9379905920496...6534353238114336
.1099511627776.188912640.329426847840.201754894742320.290550417324168160
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 16*a(n-1)
k=2: a(n) = 8*a(n-1) -11*a(n-2) -16*a(n-3)
k=3: a(n) = 23*a(n-1) -153*a(n-2) +217*a(n-3) +258*a(n-4) -456*a(n-5) -104*a(n-6) +192*a(n-7)
k=4: [order 9]
k=5: [order 29]
k=6: [order 55]
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 6*a(n-1) +3*a(n-2) -42*a(n-3) -8*a(n-4) +48*a(n-5) for n>6
n=3: [order 11] for n>12
n=4: [order 28] for n>29
n=5: [order 74] for n>75
EXAMPLE
Some solutions for n=3 k=4
.14..6..5.13...13.15..9.15...12..4.12.10....6..5.13.15....8.14..8.10
..7..6..5..6...13.15..9..1...12..4.12..4....6..5.13..5....8.14..8.14
..5..6.14..6....9.15..9.11....5..4.12.14...13..5..6..5....6.14..6.14
CROSSREFS
Column 1 is A001025
Column 2 is A223434
Row 1 is A188825(n+1)
Sequence in context: A109098 A223395 A202329 * A223692 A165115 A165117
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 23 2013
STATUS
approved