[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A205337 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 4.
(history; published version)
#21 by Susanna Cuyler at Tue Sep 24 12:37:16 EDT 2019
STATUS

proposed

approved

#20 by Jean-François Alcover at Tue Sep 24 12:17:57 EDT 2019
STATUS

editing

proposed

#19 by Jean-François Alcover at Tue Sep 24 12:17:53 EDT 2019
MATHEMATICA

a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Binomial[i, l] Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 4(-l - 2j + i) - j + i - 1, 4(-l - 2j + i) - j], {j, 0, (4(i - l))/9}] (-1)^l, {l, 0, i}] a[n - i], {i, 1, n}]/n];

a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)

STATUS

approved

editing

#18 by Peter Luschny at Sat Apr 08 18:37:30 EDT 2017
STATUS

proposed

approved

#17 by Michel Marcus at Fri Apr 07 13:19:08 EDT 2017
STATUS

editing

proposed

#16 by Michel Marcus at Fri Apr 07 13:19:00 EDT 2017
PROG

a(n):=if n=0 then 1 else sum(sum(binomial(i, l)*sum((-1)^j*binomial(i-l, j)*binomial(-l+4*(-l-2*j+i)-j+i-1, 4*(-l-2*j+i)-j), j, 0, (4*(i-l))/9)*(-1)^l, l, 0, i)*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin , Apr 07 2017 */

STATUS

proposed

editing

#15 by Michel Marcus at Fri Apr 07 13:18:44 EDT 2017
STATUS

editing

proposed

#14 by Michel Marcus at Fri Apr 07 13:18:40 EDT 2017
FORMULA

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(4*(i-l))/9}((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. _- _Vladimir Kruchinin_, Apr 07 2017

STATUS

proposed

editing

#13 by Vladimir Kruchinin at Fri Apr 07 03:56:31 EDT 2017
STATUS

editing

proposed

#12 by Vladimir Kruchinin at Fri Apr 07 03:56:26 EDT 2017
FORMULA

a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(4*(i-l))/9}((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. Vladimir Kruchinin, Apr 07 2017

PROG

(Maxima)

a(n):=if n=0 then 1 else sum(sum(binomial(i, l)*sum((-1)^j*binomial(i-l, j)*binomial(-l+4*(-l-2*j+i)-j+i-1, 4*(-l-2*j+i)-j), j, 0, (4*(i-l))/9)*(-1)^l, l, 0, i)*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin Apr 07 2017 */

STATUS

approved

editing