[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205337 revision #20

A205337
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than 4.
2
0, 4, 12, 82, 454, 2912, 18652, 124299, 841400, 5800725, 40506816, 286137616, 2040430976, 14670243774, 106225269954, 773958961125, 5670067999156, 41742291894425, 308645064367896, 2291123920091484, 17067970534656790
OFFSET
1,2
COMMENTS
Column 4 of A205341.
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-4,-3,-2,-1,1,2,3,4}. - David Nguyen, Dec 20 2016
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
FORMULA
a(n) = Sum_{i=1..n}((Sum_{l=0..i}(binomial(i,l)*(Sum_{j=0..(4*(i-l))/9}((-1)^j*binomial(i-l,j)*binomial(-l+4*(-l-2*j+i)-j+i-1,4*(-l-2*j+i)-j)))*(-1)^l))*a(n-i))/n, a(0)=1. - Vladimir Kruchinin, Apr 07 2017
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....3....2....4....4....4....1....2....4....3....3....1....2....3....2....4
..3....5....6....3....0....5....0....4....6....1....5....0....3....1....0....2
..6....1....2....2....1....3....3....6....3....4....3....1....6....2....1....5
..2....2....1....1....3....4....1....4....4....2....4....2....4....3....4....2
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Binomial[i, l] Sum[(-1)^j Binomial[i - l, j] Binomial[-l + 4(-l - 2j + i) - j + i - 1, 4(-l - 2j + i) - j], {j, 0, (4(i - l))/9}] (-1)^l, {l, 0, i}] a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 1 else sum(sum(binomial(i, l)*sum((-1)^j*binomial(i-l, j)*binomial(-l+4*(-l-2*j+i)-j+i-1, 4*(-l-2*j+i)-j), j, 0, (4*(i-l))/9)*(-1)^l, l, 0, i)*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 07 2017 */
CROSSREFS
Cf. A205341.
Sequence in context: A197852 A362384 A305334 * A359047 A263866 A208802
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
proposed