[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A183606 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. satisfies: [x^(n+1)] A(x)^n = n*(n+1)*{[x^n] A(x)^n} for n>=0.
(history; published version)
#8 by Vaclav Kotesovec at Thu Oct 22 02:35:37 EDT 2020
STATUS

editing

approved

#7 by Vaclav Kotesovec at Thu Oct 22 02:35:32 EDT 2020
FORMULA

a(n) ~ c * n!^2 / n, where c = 2.05242598709856847249724356196772... - Vaclav Kotesovec, Oct 22 2020

#6 by Vaclav Kotesovec at Thu Oct 22 02:31:54 EDT 2020
LINKS

Vaclav Kotesovec, <a href="/A183606/b183606.txt">Table of n, a(n) for n = 0..250</a>

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 18:37:24 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 13 2011

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#4 by T. D. Noe at Thu Jan 13 00:54:22 EST 2011
STATUS

proposed

approved

#3 by Paul D. Hanna at Thu Jan 13 00:33:32 EST 2011
NAME

G.f. satisfies: [x^(n+1)] A(x)^n = n*(n+1)*{[x^n] A(x)^n} for n>=0.

FORMULA

G.f.: A(x) = x/Series_Reversion(G(x)) where A(x*G(x)) = G(x) satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}) and is the g.f. of A183607.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 176*x^4 + 3886*x^5 +...

A(x) satisfies: A(x*G(x)) = G(x) where G(x):

which satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}).

PROG

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=((#A-1)*(#A-2)*Vec(Ser(A)^(#A-2))[#A-1] - Vec(Ser(A)^(#A-2))[#A])/(#A-2)); A[n+1]}

CROSSREFS

Cf. A183607.

#2 by Paul D. Hanna at Thu Jan 13 00:28:24 EST 2011
NAME

allocated for Paul D. Hanna

G.f. satisfies: [x^(n+1)] A(x)^n = n*(n+1)*{[x^n] A(x)^n} for n>=0.

DATA

1, 1, 2, 13, 176, 3886, 125374, 5550713, 323184220, 23969935266, 2208185433708, 247518073493022, 33184572994243884, 5244964339235985636, 965302981114301621022, 204679102209593395617929

OFFSET

0,3

FORMULA

G.f.: A(x) = x/Series_Reversion(G(x)) where A(x*G(x)) = G(x) satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}) and is the g.f. of A183607.

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 176*x^4 + 3886*x^5 +...

A(x) satisfies: A(x*G(x)) = G(x) where G(x):

G(x) = 1 + x + 3*x^2 + 20*x^3 + 249*x^4 + 5087*x^5 + 155180*x^6 +...

which satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'/G}).

...

The table of coefficients in the initial powers of g.f. A(x) begins:

A^0: [1,_0, 0, 0, 0, 0, 0, 0, ...];

A^1: [1, 1,_2, 13, 176, 3886, 125374, 5550713, 323184220, ...];

A^2: [1, 2, 5,_30, 382, 8176, 259393, 11372294, 658103374, ...];

A^3: [1, 3, 9, 52,_624, 12921, 402749, 17479176, 1005197070, ...];

A^4: [1, 4, 14, 80, 909,_18180, 556210, 23886840, 1364926338, ...];

A^5: [1, 5, 20, 115, 1245, 24021,_720630, 30611920, 1737775110, ...];

A^6: [1, 6, 27, 158, 1641, 30522, 896960,_37672320, 2124251838, ...];

A^7: [1, 7, 35, 210, 2107, 37772, 1086260, 45087344,_2524891264, ...];

...

where the upper diagonal:

[0, 2, 30, 624, 18180, 720630, 37672320, 2524891264, ...]

is term-wise related to the main diagonal in the following way:

[0*1, 2*1, 6*5, 12*52, 20*909, 30*24021, 42*896960, 56*45087344, ...].

PROG

(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=((#A-1)*(#A-2)*Vec(Ser(A)^(#A-2))[#A-1] - Vec(Ser(A)^(#A-2))[#A])/(#A-2)); A[n+1]}

CROSSREFS

Cf. A183607.

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Jan 13 2011

STATUS

approved

proposed

#1 by Paul D. Hanna at Thu Jan 06 03:11:22 EST 2011
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved