editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
a(n) ~ c * n!^2 / n, where c = 2.05242598709856847249724356196772... - Vaclav Kotesovec, Oct 22 2020
Vaclav Kotesovec, <a href="/A183606/b183606.txt">Table of n, a(n) for n = 0..250</a>
approved
editing
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 13 2011
proposed
approved
G.f. satisfies: [x^(n+1)] A(x)^n = n*(n+1)*{[x^n] A(x)^n} for n>=0.
G.f.: A(x) = x/Series_Reversion(G(x)) where A(x*G(x)) = G(x) satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}) and is the g.f. of A183607.
G.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 176*x^4 + 3886*x^5 +...
A(x) satisfies: A(x*G(x)) = G(x) where G(x):
which satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}).
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=((#A-1)*(#A-2)*Vec(Ser(A)^(#A-2))[#A-1] - Vec(Ser(A)^(#A-2))[#A])/(#A-2)); A[n+1]}
Cf. A183607.
allocated for Paul D. Hanna
G.f. satisfies: [x^(n+1)] A(x)^n = n*(n+1)*{[x^n] A(x)^n} for n>=0.
1, 1, 2, 13, 176, 3886, 125374, 5550713, 323184220, 23969935266, 2208185433708, 247518073493022, 33184572994243884, 5244964339235985636, 965302981114301621022, 204679102209593395617929
0,3
G.f.: A(x) = x/Series_Reversion(G(x)) where A(x*G(x)) = G(x) satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}) and is the g.f. of A183607.
G.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 176*x^4 + 3886*x^5 +...
A(x) satisfies: A(x*G(x)) = G(x) where G(x):
G(x) = 1 + x + 3*x^2 + 20*x^3 + 249*x^4 + 5087*x^5 + 155180*x^6 +...
which satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'/G}).
...
The table of coefficients in the initial powers of g.f. A(x) begins:
A^0: [1,_0, 0, 0, 0, 0, 0, 0, ...];
A^1: [1, 1,_2, 13, 176, 3886, 125374, 5550713, 323184220, ...];
A^2: [1, 2, 5,_30, 382, 8176, 259393, 11372294, 658103374, ...];
A^3: [1, 3, 9, 52,_624, 12921, 402749, 17479176, 1005197070, ...];
A^4: [1, 4, 14, 80, 909,_18180, 556210, 23886840, 1364926338, ...];
A^5: [1, 5, 20, 115, 1245, 24021,_720630, 30611920, 1737775110, ...];
A^6: [1, 6, 27, 158, 1641, 30522, 896960,_37672320, 2124251838, ...];
A^7: [1, 7, 35, 210, 2107, 37772, 1086260, 45087344,_2524891264, ...];
...
where the upper diagonal:
[0, 2, 30, 624, 18180, 720630, 37672320, 2524891264, ...]
is term-wise related to the main diagonal in the following way:
[0*1, 2*1, 6*5, 12*52, 20*909, 30*24021, 42*896960, 56*45087344, ...].
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=((#A-1)*(#A-2)*Vec(Ser(A)^(#A-2))[#A-1] - Vec(Ser(A)^(#A-2))[#A])/(#A-2)); A[n+1]}
Cf. A183607.
allocated
nonn
Paul D. Hanna (pauldhanna(AT)juno.com), Jan 13 2011
approved
proposed
allocated for Paul D. Hanna
allocated
approved