[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183606
G.f. satisfies: [x^(n+1)] A(x)^n = n*(n+1)*{[x^n] A(x)^n} for n>=0.
2
1, 1, 2, 13, 176, 3886, 125374, 5550713, 323184220, 23969935266, 2208185433708, 247518073493022, 33184572994243884, 5244964339235985636, 965302981114301621022, 204679102209593395617929
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = x/Series_Reversion(G(x)) where A(x*G(x)) = G(x) satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}) and is the g.f. of A183607.
a(n) ~ c * n!^2 / n, where c = 2.05242598709856847249724356196772... - Vaclav Kotesovec, Oct 22 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 13*x^3 + 176*x^4 + 3886*x^5 +...
A(x) satisfies A(x*G(x)) = G(x) where:
G(x) = 1 + x + 3*x^2 + 20*x^3 + 249*x^4 + 5087*x^5 + 155180*x^6 +...
which satisfies: G(x) = 1/(1-x - x*{d/dx x^2*G'(x)/G(x)}).
...
The table of coefficients in the initial powers of g.f. A(x) begins:
A^0: [1,_0, 0, 0, 0, 0, 0, 0, ...];
A^1: [1, 1,_2, 13, 176, 3886, 125374, 5550713, 323184220, ...];
A^2: [1, 2, 5,_30, 382, 8176, 259393, 11372294, 658103374, ...];
A^3: [1, 3, 9, 52,_624, 12921, 402749, 17479176, 1005197070, ...];
A^4: [1, 4, 14, 80, 909,_18180, 556210, 23886840, 1364926338, ...];
A^5: [1, 5, 20, 115, 1245, 24021,_720630, 30611920, 1737775110, ...];
A^6: [1, 6, 27, 158, 1641, 30522, 896960,_37672320, 2124251838, ...];
A^7: [1, 7, 35, 210, 2107, 37772, 1086260, 45087344,_2524891264, ...];
...
where the upper diagonal:
[0, 2, 30, 624, 18180, 720630, 37672320, 2524891264, ...]
is term-wise related to the main diagonal in the following way:
[0*1, 2*1, 6*5, 12*52, 20*909, 30*24021, 42*896960, 56*45087344, ...].
PROG
(PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=((#A-1)*(#A-2)*Vec(Ser(A)^(#A-2))[#A-1] - Vec(Ser(A)^(#A-2))[#A])/(#A-2)); A[n+1]}
CROSSREFS
Cf. A183607.
Sequence in context: A119400 A182314 A268988 * A366194 A307655 A137610
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2011
STATUS
approved