(MAGMAMagma)
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
(MAGMAMagma)
reviewed
approved
proposed
reviewed
editing
proposed
editing
proposed
The triangular sequence of symmetrical Lah numbers (A111596, A008297) : L(n, m)=If[m = = 0, KroneckerDelta[n, 0], (-1)^n* binomial(n!/m!,k)*Binomial[binomial(n - 1, m k- 1]] + If[ -m + )*( (n == 0, KroneckerDelta[-k)! + (n, 0], -k)*(k-1)^n* ! ), with L(0,0) = 2, L(n! Binomial[,0) = L(n - 1, (-m + ,n) = (- 1]/(-m + )^n)! ].
Row sums are: {2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182, ...} = signed version of 2*A000262;.
{2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182,...}.
This sequence uses Riordan's definition.
G. C. Greubel, <a href="/A156786/b156786.txt">Rows n = 0..100 of triangle, flattened</a>
L(n, m) =If[ if m == 0, then KroneckerDelta[(n, 0], ) otherwise (-1)^n*(n!/m!)*Binomial[ binomial(n-1, m-1) + if m = n then KroneckerDelta(n, 0) otherwise (-1)^n* n! *binomial(n,m)* binomial(n - 1, n-m - 1]]).
+ If[ -m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ].
L(n, m) = (-1)^n* binomial(n,k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ), with L(0,0) = 2, L(n,0) = L(n,n) = (-1)^n. - G. C. Greubel, May 20 2019
{2},
Triangle begins as:
2;
{ -1, -1},;
{ 1, 4, 1},;
{ -1, -12, -12, -1},;
{ 1, 36, 72, 36, 1},;
{ -1, -140, -360, -360, -140, -1},;
{ 1, 750, 2100, 2400, 2100, 750, 1},;
{ -1, -5082, -15750, -16800, -16800, -15750, -5082, -1},;
{ 1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1},;
{-1, -362952, -1453536, -1721664, -1058400, -1058400, -1721664, -1453536, -362952, -1},
{1, 3628890, 16332840, 21833280, 13335840, 7620480, 13335840, 21833280, 16332840, 3628890, 1}
L[n_, m_k_] := If[m n==0 && k== 0, KroneckerDelta2, If[n, k==0], || k==n, (-1)^n, (-1)^n*( Binomial[n!/m!), k]*Binomial[n - 1, m k-1]*( (n-k)! + (n-k)*(k- 1)! )]]; Table[L[n, k], {n, 0, 10}, {k, 0, n}] +//Flatten
If[ - m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ];
Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
(PARI) { L(n, k) = if(n==0 && k==0, 2, if(k==0 || k==n, (-1)^n, (-1)^n* binomial(n, k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ) )) }; \\ G. C. Greubel, May 20 2019
(MAGMA)
[[n eq 0 and k eq 0 select 2 else k eq 0 or k eq n select (-1)^n else (-1)^n*Binomial(n, k)*Binomial(n-1, k-1)*( Factorial(n-k) + (n-k)* Factorial(k-1) ): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 20 2019
(Sage)
def L(n, k):
if (k==0 and n==0): return 2
elif (k==0 or k==n): return (-1)^n
else: return (-1)^n*binomial(n, k)*binomial(n-1, k-1)*( factorial(n-k) + (n-k)*factorial(k-1) )
[[L(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 20 2019
sign,tabl,uned
Edited by G. C. Greubel, May 20 2019
approved
editing
_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Feb 15 2009
2, -1, -1, 1, 4, 1, -1, -12, -12, -1, 1, 36, 72, 36, 1, -1, -140, -360, -360, -140, -1, 1, 750, 2100, 2400, 2100, 750, 1, -1, -5082, -15750, -16800, -16800, -15750, -5082, -1, 1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1, -1, -362952, -1453536
0,1
Row sums are:signed version of 2*A000262;
{2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182,...}.
This sequence uses Riordan's definition.
J. Riordan, Combinatorial Identities, Wiley, 1968, p.48
L(n,m)=If[m == 0, KroneckerDelta[n, 0], (-1)^n*(n!/m!)*Binomial[n - 1, m - 1]]
+ If[ -m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ].
{2},
{-1, -1},
{1, 4, 1},
{-1, -12, -12, -1},
{1, 36, 72, 36, 1},
{-1, -140, -360, -360, -140, -1},
{1, 750, 2100, 2400, 2100, 750, 1},
{-1, -5082, -15750, -16800, -16800, -15750, -5082, -1},
{1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1},
{-1, -362952, -1453536, -1721664, -1058400, -1058400, -1721664, -1453536, -362952, -1},
{1, 3628890, 16332840, 21833280, 13335840, 7620480, 13335840, 21833280, 16332840, 3628890, 1}
L[n_, m_] = If[m == 0, KroneckerDelta[n, 0], (-1)^n*(n!/m!)*Binomial[n - 1, m - 1]] +
If[ - m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ];
Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];
Flatten[%]
sign,tabl,uned,new
Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Feb 15 2009
approved