[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A156786 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
The triangular sequence of symmetrical Lah numbers (A111596, A008297) : L(n, m) = (-1)^n* binomial(n,k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ), with L(0,0) = 2, L(n,0) = L(n,n) = (-1)^n.
(history; published version)
#9 by Charles R Greathouse IV at Thu Sep 08 08:45:41 EDT 2022
PROG

(MAGMAMagma)

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#8 by Sean A. Irvine at Tue May 21 02:24:11 EDT 2019
STATUS

reviewed

approved

#7 by Michel Marcus at Tue May 21 02:22:04 EDT 2019
STATUS

proposed

reviewed

#6 by G. C. Greubel at Mon May 20 23:38:53 EDT 2019
STATUS

editing

proposed

#5 by G. C. Greubel at Mon May 20 23:38:47 EDT 2019
CROSSREFS
STATUS

proposed

editing

#4 by G. C. Greubel at Mon May 20 23:38:25 EDT 2019
STATUS

editing

proposed

#3 by G. C. Greubel at Mon May 20 23:37:36 EDT 2019
NAME

The triangular sequence of symmetrical Lah numbers (A111596, A008297) : L(n, m)=If[m = = 0, KroneckerDelta[n, 0], (-1)^n* binomial(n!/m!,k)*Binomial[binomial(n - 1, m k- 1]] + If[ -m + )*( (n == 0, KroneckerDelta[-k)! + (n, 0], -k)*(k-1)^n* ! ), with L(0,0) = 2, L(n! Binomial[,0) = L(n - 1, (-m + ,n) = (- 1]/(-m + )^n)! ].

COMMENTS

Row sums are: {2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182, ...} = signed version of 2*A000262;.

{2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182,...}.

This sequence uses Riordan's definition.

LINKS

G. C. Greubel, <a href="/A156786/b156786.txt">Rows n = 0..100 of triangle, flattened</a>

FORMULA

L(n, m) =If[ if m == 0, then KroneckerDelta[(n, 0], ) otherwise (-1)^n*(n!/m!)*Binomial[ binomial(n-1, m-1) + if m = n then KroneckerDelta(n, 0) otherwise (-1)^n* n! *binomial(n,m)* binomial(n - 1, n-m - 1]]).

+ If[ -m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ].

L(n, m) = (-1)^n* binomial(n,k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ), with L(0,0) = 2, L(n,0) = L(n,n) = (-1)^n. - G. C. Greubel, May 20 2019

EXAMPLE

{2},

Triangle begins as:

2;

{ -1, -1},;

{ 1, 4, 1},;

{ -1, -12, -12, -1},;

{ 1, 36, 72, 36, 1},;

{ -1, -140, -360, -360, -140, -1},;

{ 1, 750, 2100, 2400, 2100, 750, 1},;

{ -1, -5082, -15750, -16800, -16800, -15750, -5082, -1},;

{ 1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1},;

{-1, -362952, -1453536, -1721664, -1058400, -1058400, -1721664, -1453536, -362952, -1},

{1, 3628890, 16332840, 21833280, 13335840, 7620480, 13335840, 21833280, 16332840, 3628890, 1}

MATHEMATICA

L[n_, m_k_] := If[m n==0 && k== 0, KroneckerDelta2, If[n, k==0], || k==n, (-1)^n, (-1)^n*( Binomial[n!/m!), k]*Binomial[n - 1, m k-1]*( (n-k)! + (n-k)*(k- 1)! )]]; Table[L[n, k], {n, 0, 10}, {k, 0, n}] +//Flatten

If[ - m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ];

Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];

Flatten[%]

PROG

(PARI) { L(n, k) = if(n==0 && k==0, 2, if(k==0 || k==n, (-1)^n, (-1)^n* binomial(n, k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ) )) }; \\ G. C. Greubel, May 20 2019

(MAGMA)

[[n eq 0 and k eq 0 select 2 else k eq 0 or k eq n select (-1)^n else (-1)^n*Binomial(n, k)*Binomial(n-1, k-1)*( Factorial(n-k) + (n-k)* Factorial(k-1) ): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 20 2019

(Sage)

def L(n, k):

if (k==0 and n==0): return 2

elif (k==0 or k==n): return (-1)^n

else: return (-1)^n*binomial(n, k)*binomial(n-1, k-1)*( factorial(n-k) + (n-k)*factorial(k-1) )

[[L(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 20 2019

KEYWORD

sign,tabl,uned

EXTENSIONS

Edited by G. C. Greubel, May 20 2019

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:34:33 EDT 2012
AUTHOR

_Roger L. Bagula (rlbagulatftn(AT)yahoo.com), _, Feb 15 2009

Discussion
Fri Mar 30
17:34
OEIS Server: https://oeis.org/edit/global/158
#1 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
NAME

The triangular sequence of symmetrical Lah numbers (A111596, A008297) : L(n,m)=If[m == 0, KroneckerDelta[n, 0], (-1)^n*(n!/m!)*Binomial[n - 1, m - 1]] + If[ -m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ].

DATA

2, -1, -1, 1, 4, 1, -1, -12, -12, -1, 1, 36, 72, 36, 1, -1, -140, -360, -360, -140, -1, 1, 750, 2100, 2400, 2100, 750, 1, -1, -5082, -15750, -16800, -16800, -15750, -5082, -1, 1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1, -1, -362952, -1453536

OFFSET

0,1

COMMENTS

Row sums are:signed version of 2*A000262;

{2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182,...}.

This sequence uses Riordan's definition.

REFERENCES

J. Riordan, Combinatorial Identities, Wiley, 1968, p.48

FORMULA

L(n,m)=If[m == 0, KroneckerDelta[n, 0], (-1)^n*(n!/m!)*Binomial[n - 1, m - 1]]

+ If[ -m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ].

EXAMPLE

{2},

{-1, -1},

{1, 4, 1},

{-1, -12, -12, -1},

{1, 36, 72, 36, 1},

{-1, -140, -360, -360, -140, -1},

{1, 750, 2100, 2400, 2100, 750, 1},

{-1, -5082, -15750, -16800, -16800, -15750, -5082, -1},

{1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1},

{-1, -362952, -1453536, -1721664, -1058400, -1058400, -1721664, -1453536, -362952, -1},

{1, 3628890, 16332840, 21833280, 13335840, 7620480, 13335840, 21833280, 16332840, 3628890, 1}

MATHEMATICA

L[n_, m_] = If[m == 0, KroneckerDelta[n, 0], (-1)^n*(n!/m!)*Binomial[n - 1, m - 1]] +

If[ - m + n == 0, KroneckerDelta[n, 0], (-1)^n* n! Binomial[n - 1, (-m + n) - 1]/(-m + n)! ];

Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];

Flatten[%]

CROSSREFS
KEYWORD

sign,tabl,uned,new

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Feb 15 2009

STATUS

approved