[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156786
The triangular sequence of symmetrical Lah numbers (A111596, A008297) : L(n, m) = (-1)^n* binomial(n,k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ), with L(0,0) = 2, L(n,0) = L(n,n) = (-1)^n.
1
2, -1, -1, 1, 4, 1, -1, -12, -12, -1, 1, 36, 72, 36, 1, -1, -140, -360, -360, -140, -1, 1, 750, 2100, 2400, 2100, 750, 1, -1, -5082, -15750, -16800, -16800, -15750, -5082, -1, 1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1, -1, -362952, -1453536
OFFSET
0,1
COMMENTS
Row sums are: {2, -2, 6, -26, 146, -1002, 8102, -75266, 788706, -9193106, 117882182, ...} = signed version of 2*A000262.
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p.48
FORMULA
L(n, m) = if m = 0 then KroneckerDelta(n, 0) otherwise (-1)^n*(n!/m!)* binomial(n-1, m-1) + if m = n then KroneckerDelta(n, 0) otherwise (-1)^n* n! *binomial(n,m)* binomial(n-1, n-m-1).
L(n, m) = (-1)^n* binomial(n,k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ), with L(0,0) = 2, L(n,0) = L(n,n) = (-1)^n. - G. C. Greubel, May 20 2019
EXAMPLE
Triangle begins as:
2;
-1, -1;
1, 4, 1;
-1, -12, -12, -1;
1, 36, 72, 36, 1;
-1, -140, -360, -360, -140, -1;
1, 750, 2100, 2400, 2100, 750, 1;
-1, -5082, -15750, -16800, -16800, -15750, -5082, -1;
1, 40376, 142296, 152880, 117600, 152880, 142296, 40376, 1;
MATHEMATICA
L[n_, k_]:= If[n==0 && k==0, 2, If[k==0 || k==n, (-1)^n, (-1)^n* Binomial[n, k]*Binomial[n-1, k-1]*( (n-k)! + (n-k)*(k-1)! )]]; Table[L[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) { L(n, k) = if(n==0 && k==0, 2, if(k==0 || k==n, (-1)^n, (-1)^n* binomial(n, k)*binomial(n-1, k-1)*( (n-k)! + (n-k)*(k-1)! ) )) }; \\ G. C. Greubel, May 20 2019
(Magma)
[[n eq 0 and k eq 0 select 2 else k eq 0 or k eq n select (-1)^n else (-1)^n*Binomial(n, k)*Binomial(n-1, k-1)*( Factorial(n-k) + (n-k)* Factorial(k-1) ): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 20 2019
(Sage)
def L(n, k):
if (k==0 and n==0): return 2
elif (k==0 or k==n): return (-1)^n
else: return (-1)^n*binomial(n, k)*binomial(n-1, k-1)*( factorial(n-k) + (n-k)*factorial(k-1) )
[[L(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 20 2019
CROSSREFS
Sequence in context: A255707 A260757 A157114 * A156141 A174555 A157113
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 15 2009
EXTENSIONS
Edited by G. C. Greubel, May 20 2019
STATUS
approved