_Charles R Greathouse IV_, , <a href="/A136292/b136292.txt">Table of n, a(n) for n = 1..10000</a>
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Charles R Greathouse IV_, , <a href="/A136292/b136292.txt">Table of n, a(n) for n = 1..10000</a>
_Charles R Greathouse IV, _, <a href="/A136292/b136292.txt">Table of n, a(n) for n = 1..10000</a>
(PARI) v=[]; for(a=1, 50, for(b=1, a, for(c=1, b, for(d=1, c, for(e=1, d, if(ispseudoprime(t=a^a+b^b+c^c+d^d+e^e), v=concat(v, t))))))); v \\ _Charles R Greathouse IV, _, Feb 15 2011
_Jonathan Vos Post (jvospost3(AT)gmail.com), _, Apr 11 2008
proposed
approved
Charles R Greathouse IV, <a href="/A136292/b136292.txt">Table of n, a(n) for n = 1..10000</a>
a(5) = 37 = 1^1 + 1^1 + 2^2 + 2^2 + 3^3.
(PARI) v=[]; for(a=1, 50, for(b=1, a, for(c=1, b, for(d=1, c, for(e=1, d, if(ispseudoprime(t=a^a+b^b+c^c+d^d+e^e), v=concat(v, t))))))); v \\ Charles R Greathouse IV, Feb 15 2011
approved
proposed
Primes of the form a^a + b^b + c^c + d^d + e^e.
5, 11, 17, 31, 37, 43, 83, 89, 109, 263, 269, 521, 541, 547, 593, 773, 1051, 3181, 3187, 3413, 3691, 6763, 9377, 9403, 9887, 12527, 46663, 46993, 49787, 50549, 52937, 53189, 93851, 96697, 99563, 139999, 823547, 823553, 823573, 823651, 823831
1,1
a(1) = 5 = 1^1 + 1^1 + 1^1 + 1^1 + 1^1.
a(2) = 11 = 1^1 + 1^1 + 1^1 + 2^2 + 2^2.
a(3) = 17 = 1^1 + 2^2 + 2^2 + 2^2 + 2^2.
a(4) = 31 = 1^1 + 1^1 + 1^1 + 1^1 + 3^3.
a(5) = 37 = 1^1 + 1^1 + 2^2 + 2^2 + 3^3.
Select[Union[ Flatten[Table[ a^a + b^b + c^c + d^d + e^e, {a, 1, 20}, {b, 1, a}, {c, 1, b}, {d, 1, c}, {e, 1, d}]]], PrimeQ]
easy,nonn
Jonathan Vos Post (jvospost3(AT)gmail.com), Apr 11 2008
approved