[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136292
Primes of the form a^a + b^b + c^c + d^d + e^e.
2
5, 11, 17, 31, 37, 43, 83, 89, 109, 263, 269, 521, 541, 547, 593, 773, 1051, 3181, 3187, 3413, 3691, 6763, 9377, 9403, 9887, 12527, 46663, 46993, 49787, 50549, 52937, 53189, 93851, 96697, 99563, 139999, 823547, 823553, 823573, 823651, 823831
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
A000040 INTERSECTION {A000312(a) + A000312(b) + A000312(c) + A000312(d) + A000312(e)}.
EXAMPLE
a(1) = 5 = 1^1 + 1^1 + 1^1 + 1^1 + 1^1.
a(2) = 11 = 1^1 + 1^1 + 1^1 + 2^2 + 2^2.
a(3) = 17 = 1^1 + 2^2 + 2^2 + 2^2 + 2^2.
a(4) = 31 = 1^1 + 1^1 + 1^1 + 1^1 + 3^3.
MATHEMATICA
Select[Union[ Flatten[Table[ a^a + b^b + c^c + d^d + e^e, {a, 1, 20}, {b, 1, a}, {c, 1, b}, {d, 1, c}, {e, 1, d}]]], PrimeQ]
PROG
(PARI) v=[]; for(a=1, 50, for(b=1, a, for(c=1, b, for(d=1, c, for(e=1, d, if(ispseudoprime(t=a^a+b^b+c^c+d^d+e^e), v=concat(v, t))))))); v \\ Charles R Greathouse IV, Feb 15 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 11 2008
STATUS
approved