(MAGMAMagma) [1 + 12*n + 81*n^3 + n*(105*n+ 81*n^3)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2011
(MAGMAMagma) [1 + 12*n + 81*n^3 + n*(105*n+ 81*n^3)/2: n in [0..30]]; // Vincenzo Librandi, May 09 2011
<a href="/index/Rec#order_05">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
reviewed
approved
proposed
reviewed
editing
proposed
1 + 12n 12*n + 81n81*n^3 + n*(105n 105*n + 81n81*n^3)/2.
proposed
editing
editing
proposed
a(n) = ( sum_{k=1..3n+1} k^7 ) / ( sum_{k=1..2n3n+1} k^3 ).
a(n) = 1 + 12n + 81n^3 + n(105n + 81n^3)/2.
<a href="/index/ReaRec#recLCCorder_05">Index to sequences with linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
a(n) = (3(3n + 1)^4 + 6(3n + 1)^3 - (3n + 1)^2 - 4 (3n + 1) + 2)/6.
a(n) = Sum[( sum_{k=1..3n+1} k^7] ) /Sum[k^3], ( sum_{k, =1, 3n ..2n+ 1} k^3 ).
G.f.: -(1+182*x+606*x^2+182*x^3+x^4)/(-1+-x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Oct 23 2014
A134163:=n->1 + 12*n + 81*n^3 + n*(105*n + 81*n^3)/2: seq(A134163(n), n=0..30); # Wesley Ivan Hurt, Oct 23 2014
(MAGMA) [1 + 12*n + 81*n^3 + n*(105*n+ 81*n^3)/2: n in [0..30]]; // _Vincenzo Librandi, _, May 09 2011
nonn,easy
approved
editing
_Artur Jasinski (grafix(AT)csl.pl), _, Oct 10 2007