reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = Trace of matrix [({{2,2,2,2},{2,0,0,0},{0,2,0,0),},{0,0,2,0}})^n] a(n) = 2^n Trace of matrix [({{1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
approved
editing
(MAGMAMagma) I:=[2, 12, 56, 240]; [n le 4 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
proposed
approved
editing
proposed
a(n) = 2^n*tetranacci(n) or (2^n)*A001648(n).
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,8,16).
From Colin Barker, Sep 02 2013: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3) + 16*a(n-4). G.f.: -2*x*(32*x^3+12*x^2+4*x+1) / (16*x^4+8*x^3+4*x^2+2*x-1). - _Colin Barker_, Sep 02 2013
G.f.: -2*x*(32*x^3+12*x^2+4*x+1) / (16*x^4+8*x^3+4*x^2+2*x-1). (End)
LinearRecurrence[{2, 4, 8, 16}, {2, 12, 56, 240}, 50] (* G. C. Greubel, Dec 19 2017 *)
(PARI) x='x+O('x^30); Vec(-2*x*(32*x^3+12*x^2+4*x+1)/(16*x^4 +8*x^3 +4*x^2 +2*x -1)) \\ G. C. Greubel, Dec 19 2017
(MAGMA) I:=[2, 12, 56, 240]; [n le 4 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
approved
editing
proposed
approved
editing
proposed