[go: up one dir, main page]

login
Revision History for A127216 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = 2^n*tetranacci(n) or (2^n)*A001648(n).
(history; published version)
#18 by Michael De Vlieger at Thu Sep 19 21:58:44 EDT 2024
STATUS

reviewed

approved

#17 by Andrew Howroyd at Thu Sep 19 21:52:42 EDT 2024
STATUS

proposed

reviewed

#16 by Jason Yuen at Thu Sep 19 20:56:36 EDT 2024
STATUS

editing

proposed

#15 by Jason Yuen at Thu Sep 19 20:56:15 EDT 2024
FORMULA

a(n) = Trace of matrix [({{2,2,2,2},{2,0,0,0},{0,2,0,0),},{0,0,2,0}})^n] a(n) = 2^n Trace of matrix [({{1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].

a(n) = 2^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].

STATUS

approved

editing

#14 by Charles R Greathouse IV at Thu Sep 08 08:45:29 EDT 2022
PROG

(MAGMAMagma) I:=[2, 12, 56, 240]; [n le 4 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#13 by Susanna Cuyler at Tue Dec 19 18:33:27 EST 2017
STATUS

proposed

approved

#12 by G. C. Greubel at Tue Dec 19 17:55:03 EST 2017
STATUS

editing

proposed

#11 by G. C. Greubel at Tue Dec 19 17:54:29 EST 2017
NAME

a(n) = 2^n*tetranacci(n) or (2^n)*A001648(n).

LINKS

<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,8,16).

FORMULA

From Colin Barker, Sep 02 2013: (Start)

a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3) + 16*a(n-4). G.f.: -2*x*(32*x^3+12*x^2+4*x+1) / (16*x^4+8*x^3+4*x^2+2*x-1). - _Colin Barker_, Sep 02 2013

G.f.: -2*x*(32*x^3+12*x^2+4*x+1) / (16*x^4+8*x^3+4*x^2+2*x-1). (End)

MATHEMATICA

LinearRecurrence[{2, 4, 8, 16}, {2, 12, 56, 240}, 50] (* G. C. Greubel, Dec 19 2017 *)

PROG

(PARI) x='x+O('x^30); Vec(-2*x*(32*x^3+12*x^2+4*x+1)/(16*x^4 +8*x^3 +4*x^2 +2*x -1)) \\ G. C. Greubel, Dec 19 2017

(MAGMA) I:=[2, 12, 56, 240]; [n le 4 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017

STATUS

approved

editing

#10 by Bruno Berselli at Thu Feb 09 03:50:52 EST 2017
STATUS

proposed

approved

#9 by Indranil Ghosh at Thu Feb 09 03:43:33 EST 2017
STATUS

editing

proposed