proposed
approved
proposed
approved
editing
proposed
T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 08 2016 *)
approved
editing
_David Callan (callan(AT)stat.wisc.edu), _, Jul 20 2005
GfG.f. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)
nonn,tabl,new
Gf. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)
nonn,tabl,new
Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step.
1, 2, 1, 8, 4, 1, 32, 24, 6, 1, 136, 128, 48, 8, 1, 592, 680, 320, 80, 10, 1, 2624, 3552, 2040, 640, 120, 12, 1, 11776, 18368, 12432, 4760, 1120, 168, 14, 1, 53344, 94208, 73472, 33152, 9520, 1792, 224, 16, 1, 243392, 480096, 423936, 220416, 74592, 17136
0,2
T(n,k) = number of Delannoy paths (A001850) of steps east(E), north(N) and diagonal (D) (i.e., northeast) from (0,0) to (n,n) containing k Ds not preceded by an E.
Gf. G(z,t)=Sum_{n>=k>=0}T(n,k)*z^n*t^k is given by G(z,t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)
Table begins
\ k...0....1....2....3....4....
n\
0 |...1
1 |...2....1
2 |...8....4....1
3 |..32...24....6....1
4 |.136..128...48....8....1
5 |.592..680..320...80...10....1
The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E,
and so T(3,2)=6.
Column k=0 is A006139.
nonn,tabl
David Callan (callan(AT)stat.wisc.edu), Jul 20 2005
approved