editing
approved
editing
approved
a(n) = 1-(1/5)*sqrt(5)*{[(7/2)-(3/2)*sqrt(5))^n+[(7/2)+(3/2)*sqrt(5)]^n}, with n>=0. - Paolo P. Lava, Dec 01 2008
approved
editing
(MAGMAMagma) [Fibonacci(4*n)+1: n in [0..30]]; // Vincenzo Librandi, Apr 20 2011
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = Fibonacci(4n) + 1, or Fibonacci(2n-1)*Lucas(2n+1).
G.f.: (1-4x-2x^2)/(1-8x+8x^2-x^3); a(n) = sum{k=0..n, binomial(2n-k, 2k)2^(2n-3k)}; a(n) = sum{k=0..2n, binomial(4n-k-1, k)}+1-0^n. - Paul Barry, Jan 20 2005
From Paul Barry, Jan 20 2005: (Start)
G.f.: (1-4*x-2*x^2)/(1-8*x+8*x^2-x^3).
a(n) = Sum_{k=0..n} binomial(2n-k, 2k)*2^(2n-3k).
a(n) = 1 - 0^n + Sum_{k=0..2n} binomial(4n-k-1, k). (End)
with(combinat): for n from 0 to 25 30 do printf(`%d, `, fibonacci(4*n)+1) od: # James A. Sellers, Mar 01 2003
Fibonacci[4*Range[0, 2030]]+1 (* or *) LinearRecurrence[{8, -8, 1}, {1, 4, 22}, 30] (* Harvey P. Dale, Feb 26 2015 *)
(MAGMA) [Fibonacci(4*n)+1: n in [0..5030]]; // Vincenzo Librandi, Apr 20 2011
(PARI) Vec((21-4*x^-2+4*x-^2)/((1)/((-x-)*(1)*(x^2-7*x+1x^2)) + O(x^10030)) \\ Colin Barker, Dec 23 2014
(Sage) [fibonacci(4*n)+1 for n in (0..30)] # G. C. Greubel, Jul 15 2019
(GAP) List([0..30], n-> Fibonacci(4*n)+1); # G. C. Greubel, Jul 15 2019
approved
editing
editing
approved
If x=a(n), y=a(n+1), z=a(n+2) or x=a(n+2), y=a(n+1), z=a(n), then x^2 -9*y*x +7*x*z +9*y^2 -9*z*y +z^2 = -45. - Alexander Samokrutov, Jul 02 2015
If x=a(n), y=a(n+1), z=a(n+2) or x=a(n+2), y=a(n+1), z=a(n), then x^2 -9*y*x +7*x*z +9*y^2 -9*z*y +z^2 = -45. - Alexander Samokrutov, Jul 02 2015
proposed
editing