[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081002 revision #35

A081002
a(n) = Fibonacci(4n) + 1, or Fibonacci(2n-1)*Lucas(2n+1).
1
1, 4, 22, 145, 988, 6766, 46369, 317812, 2178310, 14930353, 102334156, 701408734, 4807526977, 32951280100, 225851433718, 1548008755921, 10610209857724, 72723460248142, 498454011879265, 3416454622906708, 23416728348467686
OFFSET
0,2
COMMENTS
If x=a(n), y=a(n+1), z=a(n+2) or x=a(n+2), y=a(n+1), z=a(n), then x^2 -9*y*x +7*x*z +9*y^2 -9*z*y +z^2 = -45. - Alexander Samokrutov, Jul 02 2015
REFERENCES
Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
FORMULA
a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
From Paul Barry, Jan 20 2005: (Start)
G.f.: (1-4*x-2*x^2)/(1-8*x+8*x^2-x^3).
a(n) = Sum_{k=0..n} binomial(2n-k, 2k)*2^(2n-3k).
a(n) = 1 - 0^n + Sum_{k=0..2n} binomial(4n-k-1, k). (End)
a(n) = 1-(1/5)*sqrt(5)*{[(7/2)-(3/2)*sqrt(5))^n+[(7/2)+(3/2)*sqrt(5)]^n}, with n>=0. - Paolo P. Lava, Dec 01 2008
MAPLE
with(combinat): for n from 0 to 30 do printf(`%d, `, fibonacci(4*n)+1) od: # James A. Sellers, Mar 01 2003
MATHEMATICA
Fibonacci[4*Range[0, 30]]+1 (* or *) LinearRecurrence[{8, -8, 1}, {1, 4, 22}, 30] (* Harvey P. Dale, Feb 26 2015 *)
PROG
(MAGMA) [Fibonacci(4*n)+1: n in [0..30]]; // Vincenzo Librandi, Apr 20 2011
(PARI) Vec((1-4*x-2*x^2)/((1-x)*(1-7*x+x^2)) + O(x^30)) \\ Colin Barker, Dec 23 2014
(Sage) [fibonacci(4*n)+1 for n in (0..30)] # G. C. Greubel, Jul 15 2019
(GAP) List([0..30], n-> Fibonacci(4*n)+1); # G. C. Greubel, Jul 15 2019
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Sequence in context: A368562 A027391 A134988 * A222012 A057834 A196795
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 01 2003
EXTENSIONS
More terms from James A. Sellers, Mar 01 2003
STATUS
proposed