[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A076920 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Highest common factor of a pair of successive terms of A076919.
(history; published version)
#10 by Alois P. Heinz at Wed Oct 25 08:47:32 EDT 2023
STATUS

proposed

approved

#9 by Jean-François Alcover at Wed Oct 25 08:10:12 EDT 2023
STATUS

editing

proposed

#8 by Jean-François Alcover at Wed Oct 25 08:09:58 EDT 2023
MATHEMATICA

f[1] = 1; f[2] = 2; (* f is A076919 *)

f[n_] := f[n] = Module[{k}, For[k = f[n-1] + 1, True, k++, If[GCD[f[n-1], f[n-2]] != GCD[k, f[n-1]] && GCD[k, f[n-1]] > 1, Return[k]]]];

GCD @@@ Partition[Table[f[n], {n, 1, 81}], 2, 1] (* Jean-François Alcover, Oct 25 2023 *)

STATUS

approved

editing

#7 by Jon E. Schoenfield at Fri Aug 07 02:44:10 EDT 2015
STATUS

editing

approved

#6 by Jon E. Schoenfield at Fri Aug 07 02:44:08 EDT 2015
MAPLE

A076920 := proc(nmax) local a, b, k; a := [1, 2] ; b := [1] ; while nops(b) < nmax do k := op(-1, a)+1 ; while gcd(k, op(-1, a)) <= 1 or gcd(k, op(-1, a)) = gcd(op(-1, a), op(-2, a)) do k := k+1 ; od ; b := [op(b), gcd(k, op(-1, a))] ; a := [op(a), k] ; od ; RETURN(b) ; end: A076920(80) ; - _# _R. J. Mathar_, Jul 01 2007

STATUS

approved

editing

#5 by N. J. A. Sloane at Thu Dec 05 19:55:47 EST 2013
AUTHOR

_Amarnath Murthy (amarnath_murthy(AT)yahoo.com), _, Oct 17 2002

Discussion
Thu Dec 05
19:55
OEIS Server: https://oeis.org/edit/global/2075
#4 by Russ Cox at Fri Mar 30 17:38:48 EDT 2012
MAPLE

A076920 := proc(nmax) local a, b, k; a := [1, 2] ; b := [1] ; while nops(b) < nmax do k := op(-1, a)+1 ; while gcd(k, op(-1, a)) <= 1 or gcd(k, op(-1, a)) = gcd(op(-1, a), op(-2, a)) do k := k+1 ; od ; b := [op(b), gcd(k, op(-1, a))] ; a := [op(a), k] ; od ; RETURN(b) ; end: A076920(80) ; - _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Jul 01 2007

EXTENSIONS

More terms from _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Jul 01 2007

Discussion
Fri Mar 30
17:38
OEIS Server: https://oeis.org/edit/global/190
#3 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
MAPLE

A076920 := proc(nmax) local a, b, k; a := [1, 2] ; b := [1] ; while nops(b) < nmax do k := op(-1, a)+1 ; while gcd(k, op(-1, a)) <= 1 or gcd(k, op(-1, a)) = gcd(op(-1, a), op(-2, a)) do k := k+1 ; od ; b := [op(b), gcd(k, op(-1, a))] ; a := [op(a), k] ; od ; RETURN(b) ; end: A076920(80) ; - Richard R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 01 2007

KEYWORD

nonn,new

nonn

EXTENSIONS

More terms from Richard R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 01 2007

#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
NAME

The highest Highest common factor of a pair of successive members terms of A076919.

DATA

1, 2, 4, 2, 5, 3, 2, 4, 2, 13, 3, 2, 4, 2, 5, 11, 2, 4, 2, 37, 3, 2, 4, 2, 61, 3, 2, 4, 2, 97, 3, 2, 4, 2, 151, 3, 2, 229, 3, 2, 4, 2, 349, 3, 2, 4, 2, 23, 47, 2, 5, 227, 2, 4, 2, 5, 11, 2, 4, 2, 17, 83, 2, 4, 2, 751, 3, 2, 1129, 3, 2, 4, 2, 1699, 3, 2, 2551, 3, 2, 7

COMMENTS

Observations (1): a(5n+3) = 4, (2): a(5n + 2) = 2 = a(5n + 4) (3): the second onwards string "2,4,2" is always sandwitched between two primes.(proof!!)

MAPLE

A076920 := proc(nmax) local a, b, k; a := [1, 2] ; b := [1] ; while nops(b) < nmax do k := op(-1, a)+1 ; while gcd(k, op(-1, a)) <= 1 or gcd(k, op(-1, a)) = gcd(op(-1, a), op(-2, a)) do k := k+1 ; od ; b := [op(b), gcd(k, op(-1, a))] ; a := [op(a), k] ; od ; RETURN(b) ; end: A076920(80) ; - Richard J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 01 2007

KEYWORD

more,nonn,new

nonn

EXTENSIONS

More terms from Richard J. Mathar (mathar(AT)strw.leidenuniv.nl), Jul 01 2007

#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

The highest common factor of pair of successive members of A076919.

DATA

1, 2, 4, 2, 5, 3, 2, 4, 2, 13, 3, 2, 4, 2, 5, 11, 2, 4, 2, 37, 3, 2, 4, 2, 61, 3, 2, 4, 2, 97

OFFSET

1,2

COMMENTS

Observations (1): a(5n+3) = 4, (2): a(5n + 2) = 2 = a(5n + 4) (3): the second onwards string "2,4,2" is always sandwitched between two primes.(proof!!)

CROSSREFS

Cf. A076919.

KEYWORD

more,nonn

AUTHOR

Amarnath Murthy (amarnath_murthy(AT)yahoo.com), Oct 17 2002

STATUS

approved