[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076920
Highest common factor of a pair of successive terms of A076919.
3
1, 2, 4, 2, 5, 3, 2, 4, 2, 13, 3, 2, 4, 2, 5, 11, 2, 4, 2, 37, 3, 2, 4, 2, 61, 3, 2, 4, 2, 97, 3, 2, 4, 2, 151, 3, 2, 229, 3, 2, 4, 2, 349, 3, 2, 4, 2, 23, 47, 2, 5, 227, 2, 4, 2, 5, 11, 2, 4, 2, 17, 83, 2, 4, 2, 751, 3, 2, 1129, 3, 2, 4, 2, 1699, 3, 2, 2551, 3, 2, 7
OFFSET
1,2
MAPLE
A076920 := proc(nmax) local a, b, k; a := [1, 2] ; b := [1] ; while nops(b) < nmax do k := op(-1, a)+1 ; while gcd(k, op(-1, a)) <= 1 or gcd(k, op(-1, a)) = gcd(op(-1, a), op(-2, a)) do k := k+1 ; od ; b := [op(b), gcd(k, op(-1, a))] ; a := [op(a), k] ; od ; RETURN(b) ; end: A076920(80) ; # R. J. Mathar, Jul 01 2007
MATHEMATICA
f[1] = 1; f[2] = 2; (* f is A076919 *)
f[n_] := f[n] = Module[{k}, For[k = f[n-1] + 1, True, k++, If[GCD[f[n-1], f[n-2]] != GCD[k, f[n-1]] && GCD[k, f[n-1]] > 1, Return[k]]]];
GCD @@@ Partition[Table[f[n], {n, 1, 81}], 2, 1] (* Jean-François Alcover, Oct 25 2023 *)
CROSSREFS
Cf. A076919.
Sequence in context: A238262 A307664 A057037 * A183225 A366586 A020774
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Oct 17 2002
EXTENSIONS
More terms from R. J. Mathar, Jul 01 2007
STATUS
approved