a(n)=z(n, A062383(n)) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*v+1. - _Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Feb 15 2004
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
a(n)=z(n, A062383(n)) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*v+1. - _Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Feb 15 2004
_Marc LeBrun (mlb(AT)well.com), _, Oct 18 2001
a(n)=z(n, A062383(n)) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Feb 15 2004
base,easy,nonn,new
a(n)=z(n, A062383(n)) with z(u,v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2,v)*2 else z([u/2],v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Feb 15 2004
base,easy,nonn,new
a(n)=z(n,A062383(n)) with z(u,v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2,v)*2 else z([u/2],v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Feb 15 2004
base,easy,nonn,new
Reduced binary string self-substitutions: a(n) is obtained by substituting n for each 1-bit in the binary expansion of n, then dividing by n.
base,easy,nonn,new
Reduced binary string self-substitutions: a(n) is obtained by substituting n for each 1-bit in n, then dividing by n.
1, 2, 5, 4, 17, 18, 73, 8, 65, 66, 529, 68, 545, 546, 4369, 16, 257, 258, 4129, 260, 4161, 4162, 66593, 264, 4225, 4226, 67617, 4228, 67649, 67650, 1082401, 32, 1025, 1026, 32833, 1028, 32897, 32898, 1052737, 1032, 33025, 33026, 1056833, 33028, 1056897
1,2
a(5): 5=101->(101)0(101)=1010101=85; 85/5=17.
base,easy,nonn
Marc LeBrun (mlb(AT)well.com), Oct 18 2001
approved