[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A065160 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Reduced binary string self-substitutions: a(n) is obtained by substituting n for each 1-bit in the binary expansion of n, then dividing by n.
(history; published version)
#8 by Russ Cox at Fri Mar 30 18:50:19 EDT 2012
FORMULA

a(n)=z(n, A062383(n)) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*v+1. - _Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Feb 15 2004

Discussion
Fri Mar 30
18:50
OEIS Server: https://oeis.org/edit/global/246
#7 by Russ Cox at Fri Mar 30 17:38:10 EDT 2012
AUTHOR

_Marc LeBrun (mlb(AT)well.com), _, Oct 18 2001

Discussion
Fri Mar 30
17:38
OEIS Server: https://oeis.org/edit/global/183
#6 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
FORMULA

a(n)=z(n, A062383(n)) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Feb 15 2004

KEYWORD

base,easy,nonn,new

#5 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

a(2^n)=2^n. a(4n+2)=1+a(4n+1). a(n)=A065158(n, n)=A065157(n, n)/n=A065159(n)/n.

a(n)=z(n, A062383(n)) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Feb 15 2004

KEYWORD

base,easy,nonn,new

#4 by N. J. A. Sloane at Wed Sep 22 03:00:00 EDT 2004
FORMULA

a(n)=z(n, A062383(n)) with z(u,v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2,v)*2 else z([u/2],v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Feb 15 2004

KEYWORD

base,easy,nonn,new

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
FORMULA

a(n)=z(n,A062383(n)) with z(u,v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2,v)*2 else z([u/2],v)*v+1. - Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Feb 15 2004

KEYWORD

base,easy,nonn,new

#2 by N. J. A. Sloane at Thu Feb 19 03:00:00 EST 2004
NAME

Reduced binary string self-substitutions: a(n) is obtained by substituting n for each 1-bit in the binary expansion of n, then dividing by n.

FORMULA

a(2^n)=2^n. a(4n+2)=1+a(4n+1). a(n)=A065158(n,n)=A065157(n,n)/n=A065159(n)/n.

CROSSREFS

Cf. A065157, A065158, . Equals A065159(n)/n.

KEYWORD

base,easy,nonn,new

#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

Reduced binary string self-substitutions: a(n) is obtained by substituting n for each 1-bit in n, then dividing by n.

DATA

1, 2, 5, 4, 17, 18, 73, 8, 65, 66, 529, 68, 545, 546, 4369, 16, 257, 258, 4129, 260, 4161, 4162, 66593, 264, 4225, 4226, 67617, 4228, 67649, 67650, 1082401, 32, 1025, 1026, 32833, 1028, 32897, 32898, 1052737, 1032, 33025, 33026, 1056833, 33028, 1056897

OFFSET

1,2

COMMENTS

By convention a(0)=0. a(2^n)=2^n. a(4n+2)=1+a(4n+1). a(n)=A065158(n,n)=A065157(n,n)/n=A065159(n)/n.

EXAMPLE

a(5): 5=101->(101)0(101)=1010101=85; 85/5=17.

CROSSREFS
KEYWORD

base,easy,nonn

AUTHOR

Marc LeBrun (mlb(AT)well.com), Oct 18 2001

STATUS

approved