[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065159
Binary string self-substitutions: a(n) is obtained by substituting the binary expansion of n for each 1-bit in the binary expansion of n.
4
0, 1, 4, 15, 16, 85, 108, 511, 64, 585, 660, 5819, 816, 7085, 7644, 65535, 256, 4369, 4644, 78451, 5200, 87381, 91564, 1531639, 6336, 105625, 109876, 1825659, 118384, 1961821, 2029500, 33554431, 1024, 33825, 34884, 1149155, 37008, 1217189, 1250124, 41056743
OFFSET
0,3
FORMULA
a(0) = 0. a(2^n) = 4^n. a(4n+2) = (4n+2)*(1+a(4n+1)/(4n+1)).
a(n) = A065157(n,n) = A065158(n,n)*n = A065160(n)*n.
a(n) =z(n, n) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*A062383(v)+v. - Reinhard Zumkeller, Feb 15 2004
EXAMPLE
a(5): 5 = 101 -> (101)0(101) = 1010101 = 85.
MATHEMATICA
bss[n_]:=Module[{idn2=IntegerDigits[n, 2]}, FromDigits[Flatten[idn2/.{1-> idn2}], 2]]; Array[bss, 40, 0] (* Harvey P. Dale, Aug 15 2017 *)
PROG
(Python)
def a(n): b = bin(n)[2:]; return int(b.replace("1", b), 2)
print([a(n) for n in range(40)]) # Michael S. Branicky, Aug 05 2022
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Marc LeBrun, Oct 18 2001
EXTENSIONS
Name clarified by Michael S. Branicky, Aug 05 2022
STATUS
approved