editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
Conjecture D-finite with recurrence -2*(n-1)*(2*n-1) *(7912210314*n^2 +24034951267*n -109031255382)*a(n) +2*(-15824420628*n^4 +759853283620*n^3 -1653756416501*n^2 -3170366114943*n +6074871939666) *a(n-1) +2*(1171007126472*n^4 -5580539787848*n^3 -21281457754861*n^2 +151349953543323*n -205322404158756) *a(n-2) +(530118091038*n^4 -3085109917817*n^3 -8408054715093*n^2 +759853276142928591932*n -101713943817720) *a(n-3)
83620*n^3-1653756416501*n^2-3170366114943*n+6074871939666) *a(n-1) +2*(1171007126472*n^4-5580539787848*n^3-21281457754861*n^2+151349953543323*n-205322404158756) *a(n-2) +(530118091038*n^4-3085109917817*n^3-8408054715093*n^2+76142928591932*n-101713943817720) *a(n-3)
-15*(n-3)*(n-6) *(23736630942*n^2 +73277266499*n-235582184233)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
approved
editing
editing
approved
Conjecture D-finite with recurrence -2*(n-1)*(2*n-1) *(7912210314*n^2+24034951267*n-109031255382)*a(n) +2*(-15824420628*n^4+7598532
83620*n^3-1653756416501*n^2-3170366114943*n+6074871939666) *a(n-1) +2*(1171007126472*n^4-5580539787848*n^3-21281457754861*n^2+151349953543323*n-205322404158756) *a(n-2) +(530118091038*n^4-3085109917817*n^3-8408054715093*n^2+76142928591932*n-101713943817720) *a(n-3)
-15*(n-3)*(n-6) *(23736630942*n^2+73277266499*n-235582184233)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
A045740 := proc(n)
local k ;
add(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k) , k=1..n) ;
end proc:
seq(A045740(n), n=1..30) ; # R. J. Mathar, Jul 22 2022
approved
editing
Emeric Deutsch (deutsch(AT)duke.poly.edu)
Sum(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k), k=1..n)
nonn,new
nonn
Components Number of components in all forests on nodes on a circle.
nonn,new
nonn
sumSum(k*binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k),k=1..n)
nonn,new
nonn
Emeric Deutsch (deutsch@magnus(AT)duke.poly.edu)
Components in all forests on nodes on a circle.
1, 3, 12, 62, 370, 2397, 16345, 115376, 834786, 6152285, 45990120, 347673108, 2652283517, 20385035972, 157656007680, 1225743120520, 9572972899946, 75056029550721, 590469939950716, 4659115833115680, 36859770507695688
1,2
sum(k*binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k),k=1..n)
nonn
Emeric Deutsch (deutsch@magnus.poly.edu)
approved