[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A045740 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of components in all forests on nodes on a circle.
(history; published version)
#9 by R. J. Mathar at Thu Jan 11 08:02:43 EST 2024
STATUS

editing

approved

#8 by R. J. Mathar at Thu Jan 11 08:01:59 EST 2024
FORMULA

Conjecture D-finite with recurrence -2*(n-1)*(2*n-1) *(7912210314*n^2 +24034951267*n -109031255382)*a(n) +2*(-15824420628*n^4 +759853283620*n^3 -1653756416501*n^2 -3170366114943*n +6074871939666) *a(n-1) +2*(1171007126472*n^4 -5580539787848*n^3 -21281457754861*n^2 +151349953543323*n -205322404158756) *a(n-2) +(530118091038*n^4 -3085109917817*n^3 -8408054715093*n^2 +759853276142928591932*n -101713943817720) *a(n-3)

83620*n^3-1653756416501*n^2-3170366114943*n+6074871939666) *a(n-1) +2*(1171007126472*n^4-5580539787848*n^3-21281457754861*n^2+151349953543323*n-205322404158756) *a(n-2) +(530118091038*n^4-3085109917817*n^3-8408054715093*n^2+76142928591932*n-101713943817720) *a(n-3)

-15*(n-3)*(n-6) *(23736630942*n^2 +73277266499*n-235582184233)*a(n-4)=0. - R. J. Mathar, Jul 22 2022

STATUS

approved

editing

#7 by R. J. Mathar at Fri Jul 22 10:03:47 EDT 2022
STATUS

editing

approved

#6 by R. J. Mathar at Fri Jul 22 10:03:42 EDT 2022
FORMULA

Conjecture D-finite with recurrence -2*(n-1)*(2*n-1) *(7912210314*n^2+24034951267*n-109031255382)*a(n) +2*(-15824420628*n^4+7598532

83620*n^3-1653756416501*n^2-3170366114943*n+6074871939666) *a(n-1) +2*(1171007126472*n^4-5580539787848*n^3-21281457754861*n^2+151349953543323*n-205322404158756) *a(n-2) +(530118091038*n^4-3085109917817*n^3-8408054715093*n^2+76142928591932*n-101713943817720) *a(n-3)

-15*(n-3)*(n-6) *(23736630942*n^2+73277266499*n-235582184233)*a(n-4)=0. - R. J. Mathar, Jul 22 2022

MAPLE

A045740 := proc(n)

local k ;

add(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k) , k=1..n) ;

end proc:

seq(A045740(n), n=1..30) ; # R. J. Mathar, Jul 22 2022

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 17:35:51 EDT 2012
AUTHOR

Emeric Deutsch (deutsch(AT)duke.poly.edu)

Emeric Deutsch

Discussion
Fri Mar 30
17:35
OEIS Server: https://oeis.org/edit/global/173
#4 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

Sum(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k), k=1..n)

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Components Number of components in all forests on nodes on a circle.

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
FORMULA

sumSum(k*binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k),k=1..n)

KEYWORD

nonn,new

nonn

AUTHOR

Emeric Deutsch (deutsch@magnus(AT)duke.poly.edu)

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

Components in all forests on nodes on a circle.

DATA

1, 3, 12, 62, 370, 2397, 16345, 115376, 834786, 6152285, 45990120, 347673108, 2652283517, 20385035972, 157656007680, 1225743120520, 9572972899946, 75056029550721, 590469939950716, 4659115833115680, 36859770507695688

OFFSET

1,2

FORMULA

sum(k*binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k),k=1..n)

KEYWORD

nonn

AUTHOR

Emeric Deutsch (deutsch@magnus.poly.edu)

STATUS

approved