OFFSET
1,2
FORMULA
Sum(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k), k=1..n)
Conjecture D-finite with recurrence -2*(n-1)*(2*n-1) *(7912210314*n^2 +24034951267*n -109031255382)*a(n) +2*(-15824420628*n^4 +759853283620*n^3 -1653756416501*n^2 -3170366114943*n +6074871939666) *a(n-1) +2*(1171007126472*n^4 -5580539787848*n^3 -21281457754861*n^2 +151349953543323*n -205322404158756) *a(n-2) +(530118091038*n^4 -3085109917817*n^3 -8408054715093*n^2 +76142928591932*n -101713943817720) *a(n-3)
-15*(n-3)*(n-6) *(23736630942*n^2 +73277266499*n-235582184233)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
MAPLE
A045740 := proc(n)
local k ;
add(k*binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k) , k=1..n) ;
end proc:
seq(A045740(n), n=1..30) ; # R. J. Mathar, Jul 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
editing