proposed
approved
proposed
approved
editing
proposed
(PARI) real((I^(89/90) - I^(91/90))/2) // \\ (imaginary part is not exactly zero only because of finite precision) Rick L. Shepherd, Apr 12 2017
approved
editing
editing
approved
<a href="/index/Al#algebraic_48">Index entries for algebraic numbers, degree 48</a>
approved
editing
editing
approved
proposed
approved
editing
proposed
The minimal polynomial is 281474976710656 x^48 - 3377699720527872 x^46 + 18999560927969280 x^44 - 66568831992070144 x^42 + 162828875980603392 x^40 - 295364007592722432 x^38 + 411985976135516160 x^36 - 452180272956309504 x^34 + 396366279591591936 x^32 - 280058255978266624 x^30 + 160303703377575936 x^28 - 74448984852135936 x^26 + 28011510450094080 x^24 - 8500299631165440 x^22 + 2064791072931840 x^20 - 397107008634880 x^18 + 59570604933120 x^16 - 6832518856704 x^14 + 583456329728 x^12 - 35782471680 x^10 + 1497954816 x^8 - 39625728 x^6 + 579456 x^4 - 3456 x^2 + 1 (WolframAlpha). - Rick L. Shepherd, Apr 12 2017
Equals sin(Pi/180) = cos(89*Pi/180) = (i^(89/90) - i^(91/90))/2 (the last from WolframAlpha, rearranged). - Rick L. Shepherd, Apr 12 2017
(PARI) real((I^(89/90) - I^(91/90))/2) // (imaginary part is not exactly zero only because of finite precision) Rick L. Shepherd, Apr 12 2017
approved
editing