OFFSET
0,3
COMMENTS
An algebraic number of degree 48. - Charles R Greathouse IV, Apr 14 2014
This algebraic number has denominator 2, the least integer k > 0 such that k times the number is an algebraic integer. - Charles R Greathouse IV, Nov 12 2014
The Fifteenth Century Persian mathematician Jamshid Al-Kashi was the first to calculate the value of sine of one degree correct to ten sexagesimal places (17 decimal digits) in his Risala al-Watar wa'l Jaib. - Mohammad K. Azarian, Jan 14 2017
The minimal polynomial is 281474976710656 x^48 - 3377699720527872 x^46 + 18999560927969280 x^44 - 66568831992070144 x^42 + 162828875980603392 x^40 - 295364007592722432 x^38 + 411985976135516160 x^36 - 452180272956309504 x^34 + 396366279591591936 x^32 - 280058255978266624 x^30 + 160303703377575936 x^28 - 74448984852135936 x^26 + 28011510450094080 x^24 - 8500299631165440 x^22 + 2064791072931840 x^20 - 397107008634880 x^18 + 59570604933120 x^16 - 6832518856704 x^14 + 583456329728 x^12 - 35782471680 x^10 + 1497954816 x^8 - 39625728 x^6 + 579456 x^4 - 3456 x^2 + 1 (WolframAlpha). - Rick L. Shepherd, Apr 12 2017
REFERENCES
Mohammad K. Azarian, Forty-Five Nested Equilateral Triangles and cosecant of 1 degree, Problem 813, College Mathematics Journal, Vol. 36, No. 5, November 2005, pp. 413-414. Solution published in Vol. 37, No. 5, November 2006, pp. 394-395.
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
Mohammad K. Azarian, A Study of Risa-la al-Watar wa'l Jaib ("The Treatise on the Chord and Sine"), Forum Geometricorum, Volume 15 (2015) 229-242. Mathematical Reviews, MR 3418854 (Reviewed), Zentralblatt MATH, Zbl 1328.01015.
FORMULA
Equals sin(Pi/180) = cos(89*Pi/180) = (i^(89/90) - i^(91/90))/2 (the last from WolframAlpha, rearranged). - Rick L. Shepherd, Apr 12 2017
EXAMPLE
0.01745240643728351281941897851631...
MATHEMATICA
Join[{0}, RealDigits[N[Sin[Pi/180], 200]][[1]]] (* and/or *)
Join[{0}, RealDigits[N[Sin[1 Degree], 200]][[1]]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
PROG
(PARI) sin(Pi/180)
(PARI) real((I^(89/90) - I^(91/90))/2) \\ (imaginary part is not exactly zero only because of finite precision) Rick L. Shepherd, Apr 12 2017
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Jan 19 2000
STATUS
approved