[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A005822 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f.: x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1).
(history; published version)
#45 by Charles R Greathouse IV at Thu Sep 08 08:44:34 EDT 2022
PROG

(MAGMAMagma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#44 by Charles R Greathouse IV at Wed Apr 13 13:25:17 EDT 2022
LINKS

Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Discussion
Wed Apr 13
13:25
OEIS Server: https://oeis.org/edit/global/2938
#43 by Charles R Greathouse IV at Fri Mar 12 22:32:36 EST 2021
LINKS

Simon Plouffe, <a href="https://arxiv.org/ftp/arxiv/papers/0911abs/0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

Discussion
Fri Mar 12
22:32
OEIS Server: https://oeis.org/edit/global/2898
#42 by N. J. A. Sloane at Mon Feb 22 14:14:30 EST 2021
LINKS

Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articlesA000051/FonctionsGeneratricesa000051_2.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, Appendix to Thesis, Montreal, 1992.

Discussion
Mon Feb 22
14:14
OEIS Server: https://oeis.org/edit/global/2888
#41 by N. J. A. Sloane at Mon Feb 22 12:12:22 EST 2021
LINKS

Simon Plouffe, <a href="httphttps://www.lacim.uqamarxiv.caorg/ftp/arxiv/%7Eplouffepapers/articles0911/MasterThesis0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

Discussion
Mon Feb 22
12:12
OEIS Server: https://oeis.org/edit/global/2887
#40 by N. J. A. Sloane at Thu Feb 06 09:10:05 EST 2020
STATUS

editing

approved

#39 by N. J. A. Sloane at Thu Feb 06 09:09:58 EST 2020
COMMENTS

The original definition was "Number of spanning trees in third power of cycle", but even after studying Baron et al. (1985) this is unclear, so the definition has been replaced by the generating function.

This is a rescaled version of the number of spanning trees in the cube of an n-cycle. See A331905 for details. - N. J. A. Sloane, Feb 06 2020

LINKS

Tsuyoshi Miezaki, <a href="/A331905/a331905.pdf">A note on spanning trees.</a>

CROSSREFS
EXTENSIONS

Entry revised by N. J. A. Sloane, Jan 25 2020 and Feb 06 2020.

STATUS

approved

editing

#38 by Bruno Berselli at Tue Jan 28 11:40:34 EST 2020
STATUS

proposed

approved

#37 by Vincenzo Librandi at Tue Jan 28 01:21:41 EST 2020
STATUS

editing

proposed

#36 by Vincenzo Librandi at Tue Jan 28 01:21:18 EST 2020
MATHEMATICA

CoefficientList[Series[x (1 - x^2) (x^4 + x^3 - x^2 + x + 1) / (x^8 - 4 x^6 - x^4 - 4 x^2 + 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 28 2020 *)

PROG

(MAGMA) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020

STATUS

approved

editing