(MAGMAMagma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
(MAGMAMagma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020
Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, <a href="https://arxiv.org/ftp/arxiv/papers/0911abs/0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articlesA000051/FonctionsGeneratricesa000051_2.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, Appendix to Thesis, Montreal, 1992.
Simon Plouffe, <a href="httphttps://www.lacim.uqamarxiv.caorg/ftp/arxiv%7Eplouffepapers/articles0911/MasterThesis0911.4975.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.
editing
approved
The original definition was "Number of spanning trees in third power of cycle", but even after studying Baron et al. (1985) this is unclear, so the definition has been replaced by the generating function.
This is a rescaled version of the number of spanning trees in the cube of an n-cycle. See A331905 for details. - N. J. A. Sloane, Feb 06 2020
Tsuyoshi Miezaki, <a href="/A331905/a331905.pdf">A note on spanning trees.</a>
Entry revised by N. J. A. Sloane, Jan 25 2020 and Feb 06 2020.
approved
editing
proposed
approved
editing
proposed
CoefficientList[Series[x (1 - x^2) (x^4 + x^3 - x^2 + x + 1) / (x^8 - 4 x^6 - x^4 - 4 x^2 + 1), {x, 0, 35}], x] (* Vincenzo Librandi, Jan 28 2020 *)
(MAGMA) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( x*(1-x^2)*(x^4+x^3-x^2+x+1) / (x^8-4*x^6-x^4-4*x^2+1))); // Vincenzo Librandi, Jan 28 2020
approved
editing