[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169630
a(n) = n times the square of Fibonacci(n).
6
0, 1, 2, 12, 36, 125, 384, 1183, 3528, 10404, 30250, 87131, 248832, 705757, 1989806, 5581500, 15586704, 43356953, 120187008, 332134459, 915304500, 2516113236, 6900949462, 18888143927, 51599794176, 140718765625, 383142771674, 1041660829548, 2828107288188, 7668512468789
OFFSET
0,3
LINKS
G. Baron, H. Prodinger, R. F. Tichy, F. T. Boesch, and J. F. Wang, The number of spanning trees in the square of a cycle, Fibonacci Quart. 23 (1985), no. 3, 258-264 [MR0806296]
Zbigniew R. Bogdanowicz, The number of spanning trees in a superprism, Discrete Math. Lett. 13 (2024) 66-73. See Theorem 1.2.
R. Guy, Q on papers by Kleitman, Baron et al., SeqFan list, Mar 2010
D. J. Kleitman and B. Golden, Counting trees in a certain class of graphs, Amer. Math. Monthly 82 (1975), 40-44.
FORMULA
a(n) = A045925(n)*A000045(n) = n*A007598(n) = n *(A000045(n))^2.
a(n) = 4*a(n-1) -10*a(n-3) +4*a(n-5) -a(n-6).
G.f.: x*(1-2*x+4*x^2-2*x^3+x^4)/((1+x)^2*(x^2-3*x+1)^2).
a(n) = n*(((3 + sqrt(5))/2)^n + ((3 - sqrt(5))/2)^n - 2*(-1)^n)/5 (Bogdanowicz). - Stefano Spezia, May 05 2024
MAPLE
A169630 := proc(n) n*(combinat[fibonacci](n))^2 ; end proc:
MATHEMATICA
CoefficientList[Series[x*(1 - 2*x + 4*x^2 - 2*x^3 + x^4)/((1 + x)^2*(x^2 - 3*x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
Table[n Fibonacci[n]^2, {n, 0, 30}] (* or *) LinearRecurrence[{4, 0, -10, 0, 4, -1}, {0, 1, 2, 12, 36, 125}, 30] (* Harvey P. Dale, Jul 07 2017 *)
PROG
(Magma) I:=[0, 1, 2, 12, 36, 125]; [n le 6 select I[n] else 4*Self(n-1)-10*Self(n-3)+4*Self(n-5)-Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012
(Haskell)
a169630 n = a007598 n * n -- Reinhard Zumkeller, Sep 01 2013
(PARI) vector(40, n, n--; n*fibonacci(n)^2) \\ Michel Marcus, Jul 09 2015
CROSSREFS
Cf. A000045, A007598, A045925, A282464 (partial sums).
Sequence in context: A073404 A141208 A181825 * A192385 A352281 A361570
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 13 2010
STATUS
approved