OFFSET
1,1
COMMENTS
Prime gaps (A001223) are the differences between consecutive prime numbers. They begin: 1, 2, 2, 4, 2, 4, 2, 4, 6, ...
This is a permutation of the positive integers > 1.
EXAMPLE
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
n=1: 2 3 5 7 10 13 17 20 26
n=2: 4 6 8 12 14 19 22 25 27
n=3: 9 11 15 16 18 21 23 32 36
n=4: 24 72 77 79 87 92 94 124 126
n=5: 34 42 53 61 68 80 82 101 106
n=6: 46 47 91 97 114 121 139 168 197
n=7: 30 62 66 137 146 150 162 223 250
n=8: 282 295 319 331 335 378 409 445 476
n=9: 99 180 205 221 274 293 326 368 416
MATHEMATICA
gapa=Differences[Array[Prime, 10000]];
Table[Position[gapa, 2*(k-n+1)][[n, 1]], {k, 6}, {n, k}]
CROSSREFS
The row containing n is A028334(n).
Row n = 1 is A029707.
Row n = 2 is A029709.
Column k = 1 is A038664.
The column containing n is A274121(n).
Column k = 2 is A356221.
The diagonal A(n,n) is A356223.
A001223 lists the prime gaps.
A073491 lists numbers with gapless prime indices.
A356226 lists maximal gapless interval lengths of prime indices.
- length: A287170
- bisected length: A356229
- Heinz number: A356231
- firsts: A356232
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 04 2022
STATUS
editing