[go: up one dir, main page]

login
A328335
Numbers whose consecutive prime indices are relatively prime.
15
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88
OFFSET
1,2
COMMENTS
First differs from A302569 in having 105, which has prime indices {2, 3, 4}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of partitions whose consecutive parts are relatively prime (A328172).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
7: {4}
8: {1,1,1}
10: {1,3}
11: {5}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
22: {1,5}
23: {9}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], !MatchQ[primeMS[#], {___, x_, y_, ___}/; GCD[x, y]>1]&]
CROSSREFS
A superset of A302569.
Numbers whose prime indices are relatively prime are A289509.
Numbers with no consecutive prime indices relatively prime are A328336.
Sequence in context: A325389 A020662 A306202 * A302569 A235034 A331682
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2019
STATUS
approved