[go: up one dir, main page]

login
A119313
Numbers with a prime as third-smallest divisor.
15
6, 10, 12, 14, 15, 18, 21, 22, 24, 26, 30, 33, 34, 35, 36, 38, 39, 42, 45, 46, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 72, 74, 75, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 98, 102, 105, 106, 108, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126
OFFSET
1,1
COMMENTS
m is a term iff A001221(m) > 1 and (A067029(m) = 1 or A119288(m) < A020639(m)^2).
LINKS
EXAMPLE
a(1) = A087134(3) = 6.
From Gus Wiseman, Oct 19 2019: (Start)
The sequence of terms together with their divisors begins:
6: {1,2,3,6}
10: {1,2,5,10}
12: {1,2,3,4,6,12}
14: {1,2,7,14}
15: {1,3,5,15}
18: {1,2,3,6,9,18}
21: {1,3,7,21}
22: {1,2,11,22}
24: {1,2,3,4,6,8,12,24}
26: {1,2,13,26}
30: {1,2,3,5,6,10,15,30}
33: {1,3,11,33}
34: {1,2,17,34}
35: {1,5,7,35}
36: {1,2,3,4,6,9,12,18,36}
38: {1,2,19,38}
39: {1,3,13,39}
42: {1,2,3,6,7,14,21,42}
45: {1,3,5,9,15,45}
46: {1,2,23,46}
(End)
MAPLE
q:= n-> (l-> nops(l)>2 and isprime(l[3]))(
sort([numtheory[divisors](n)[]])):
select(q, [$1..200])[]; # Alois P. Heinz, Oct 19 2019
MATHEMATICA
Select[Range[100], Length[Divisors[#]]>2&&PrimeQ[Divisors[#][[3]]]&] (* Gus Wiseman, Oct 15 2019 *)
Select[Range[130], Length[f = FactorInteger[#]] > 1 && (f[[1, 2]] == 1 || f[[1, 1]]^2 > f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)
CROSSREFS
Complement of A119314.
Subsequences: A006881, A000469, A008588.
A subset of A002808 and A080257.
Numbers whose third-largest divisor is prime are A328338.
Second-smallest divisor is A020639.
Third-smallest divisor is A292269.
Sequence in context: A273157 A139587 A201463 * A362980 A097318 A080363
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 15 2006
EXTENSIONS
Name edited by Gus Wiseman, Oct 19 2019
STATUS
approved