[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217567
E.g.f. satisfies: A(x) = ( Sum_{n>=0} x^n/n!^2 )^A(x) where A(x) = Sum_{n>=0} a(n)*x^n/n!^2.
1
1, 1, 5, 73, 2061, 97301, 6897203, 686934284, 91511132653, 15722347919797, 3385861914011775, 893404629519870524, 283510131741909375339, 106536362337513833330932, 46788887175103244923057374, 23747979495191419502491847783, 13795147423164719523469062474093
OFFSET
0,3
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2 satisfies the following formulas.
(1) A(x) = ( Sum_{n>=0} x^n/n!^2 )^A(x).
(2) A(x) = log(A(x)) / ( Sum_{n>=0} A101981(n)*x^n/n!^2 ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2!^2 + 73*x^3/3!^2 + 2061*x^4/4!^2 + 97301*x^5/5!^2 +...
where
A(x) = (1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 + x^5/5!^2 +...)^A(x).
Related expansions:
log(A(x)) = x + 3*x^2/2!^2 + 31*x^3/3!^2 + 679*x^4/4!^2 + 25581*x^5/5!^2 + 1474706*x^6/6!^2 + 120670201*x^7/7!^2 + 13298986863*x^8/8!^2 +...
log(A(x))/A(x) = log(1 + x + x^2/2!^2 + x^3/3!^2 + x^4/4!^2 +...);
log(A(x))/A(x) = x - x^2/2!^2 + 4*x^3/3!^2 - 33*x^4/4!^2 + 456*x^5/5!^2 - 9460*x^6/6!^2 + 274800*x^7/7!^2 +...+ A101981(n)*x^n/n!^2 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/m!^2+x*O(x^n))^A); n!^2*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A197764 A126748 A276965 * A048144 A144682 A293146
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 07 2012
STATUS
approved