[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205341
T(n,k)=Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements unequal but differing by no more than k
10
0, 0, 1, 0, 2, 0, 0, 3, 2, 2, 0, 4, 6, 11, 0, 0, 5, 12, 35, 24, 5, 0, 6, 20, 82, 138, 93, 0, 0, 7, 30, 160, 454, 689, 272, 14, 0, 8, 42, 277, 1130, 2912, 3272, 971, 0, 0, 9, 56, 441, 2370, 8927, 18652, 16522, 3194, 42, 0, 10, 72, 660, 4424, 22297, 71630, 124299, 83792, 11293, 0, 0
OFFSET
1,5
COMMENTS
Table starts
..0...0.....0......0......0.......0.......0........0........0........0
..1...2.....3......4......5.......6.......7........8........9.......10
..0...2.....6.....12.....20......30......42.......56.......72.......90
..2..11....35.....82....160.....277.....441......660......942.....1295
..0..24...138....454...1130....2370....4424.....7588....12204....18660
..5..93...689...2912...8927...22297...48335....94456...170529...289229
..0.272..3272..18652..71630..214724..542850..1211784..2459988..4633800
.14.971.16522.124299.594405.2133784.6285127.16018970.36557640.76469705
LINKS
FORMULA
Empirical for row n:
n=2: T(2,k) = k
n=3: T(3,k) = k^2 - k
n=4: T(4,k) = (4/3)*k^3 - (1/2)*k^2 + (7/6)*k
n=5: T(5,k) = (23/12)*k^4 - (1/2)*k^3 + (1/12)*k^2 - (3/2)*k
n=6: T(6,k) = (44/15)*k^5 - (5/12)*k^4 + (5/12)*k^2 + (31/15)*k
n=7: T(7,k) = (841/180)*k^6 - (1/3)*k^5 - (19/36)*k^4 + (1/3)*k^3 - (103/90)*k^2 - 3*k
T(n,m) = 1/n*Sum_{i=1..n} (Sum_{,l,0,i} (binomial(i,l)*(-1)^l *Sum_{j=0..(i-l)* m/(2*m+1)}((-1)^j*binomial(i-l,j)*binomial((-l-2*j+i)*m-l-j+i-1,(-l-2*j+i)*m-j)))*T(n-i,m)), T(0,m)=1. - Vladimir Kruchinin, Apr 07 2017
EXAMPLE
Some solutions for n=5, k=3:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....2....2....2....3....2....1....2....2....2....2....2....1....3....2....3
..4....5....4....0....2....4....4....4....1....4....3....1....2....5....5....5
..6....4....3....1....4....1....2....2....0....1....0....2....4....4....4....4
..3....3....2....3....1....2....1....3....3....3....2....3....2....2....2....1
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
MATHEMATICA
T[n_, m_] := T[n, m] = If[n == 0, 1, 1/(n)*Sum[Sum[Binomial[i, l]*(-1)^l* Sum[(-1)^j*Binomial[i-l, j]*Binomial[(-l - 2*j + i)*m - l - j + i - 1, (-l - 2*j + i)*m-j], {j, 0, (i-l)*m/(2*m+1)}], {l, 0, i}]*T[n-i, m], {i, 1, n}]];
Table[T[n-m+1, m], {n, 1, 11}, {m, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
T(n, m):=if n=0 then 1 else 1/(n)*sum(sum(binomial(i, l)*(-1)^l*sum((-1)^j*binomial(i-l, j)*binomial((-l-2*j+i)*m-l-j+i-1, (-l-2*j+i)*m-j), j, 0, (i-l)*m/(2*m+1)), l, 0, i)*T(n-i, m), i, 1, n); /* Vladimir Kruchinin, Apr 07 2017 */
CROSSREFS
Column 1 odd n is A000108((n+5)/2).
Column 2 is A187430.
Row 3 is A002378(n-1).
Sequence in context: A374019 A099026 A341410 * A195664 A053202 A188122
KEYWORD
nonn,tabl,look
AUTHOR
R. H. Hardin, Jan 26 2012
STATUS
approved