[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194621 revision #17

A194621
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n in which any two parts differ by at most k.
17
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 2, 5, 6, 7, 7, 7, 4, 6, 9, 10, 11, 11, 11, 2, 7, 10, 13, 14, 15, 15, 15, 4, 8, 14, 17, 20, 21, 22, 22, 22, 3, 9, 15, 22, 25, 28, 29, 30, 30, 30, 4, 10, 20, 27, 34, 37, 40, 41, 42, 42, 42, 2, 11, 21, 33, 41, 48, 51, 54, 55, 56, 56, 56
OFFSET
0,4
COMMENTS
T(n,k) = A000041(n) for n >= 0 and k >= n.
LINKS
FORMULA
G.f. of column k: 1 + Sum_{j>0} x^j / Product_{i=0..k} (1-x^(i+j)).
EXAMPLE
T(6,0) = 4: [6], [3,3], [2,2,2], [1,1,1,1,1,1].
T(6,1) = 6: [6], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
T(6,2) = 9: [6], [4,2], [3,1,1,1], [3,2,1], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
Triangle begins:
1;
1, 1;
2, 2, 2;
2, 3, 3, 3;
3, 4, 5, 5, 5;
2, 5, 6, 7, 7, 7;
4, 6, 9, 10, 11, 11, 11;
2, 7, 10, 13, 14, 15, 15, 15;
MAPLE
b:= proc(n, i, k) option remember;
if n<0 or k<0 then 0
elif n=0 then 1
elif i<1 then 0
else b(n, i-1, k-1) +b(n-i, i, k)
fi
end:
T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n):
seq(seq(T(n, k), k=0..n), n=0..20);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, k-1] + b[n-i, i, k]]]]; t[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
Columns k=0-10 give (for n>0): A000005, A000027, A117142, A117143, A218506, A218507, A218508, A218509, A218510, A218511, A218512.
Diagonal gives: A000041.
Sequence in context: A029269 A352166 A272187 * A088004 A070548 A209628
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 30 2011
STATUS
editing