[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194623
Decimal expansion of y with 0 < x < y and x^y = y^x = 17.
2
4, 8, 9, 5, 3, 6, 7, 9, 5, 5, 5, 4, 6, 1, 1, 3, 4, 7, 1, 9, 6, 7, 1, 9, 3, 3, 8, 7, 2, 2, 9, 8, 3, 5, 8, 4, 9, 4, 7, 2, 7, 3, 1, 9, 5, 2, 8, 0, 9, 3, 7, 2, 4, 4, 3, 6, 3, 0, 8, 4, 6, 6, 4, 9, 2, 9, 5, 5, 4, 1, 2, 1, 0, 4, 9, 5, 4, 0, 9, 2, 9, 3, 6, 5, 3, 4, 1, 1, 4, 0, 8, 0, 1, 2, 1, 7, 9, 2, 6, 1
OFFSET
1,1
COMMENTS
Given z > 0, there exist positive real numbers x < y with x^y = y^x = z, if and only if z > e^e. In that case, (x,y) = ((1 + 1/t)^t,(1 + 1/t)^(t+1)) for some t > 0. For example, t = 1 gives 2^4 = 4^2 = 16 > e^e. When x^y = y^x = 17, at least one of x and y is transcendental. See Sondow and Marques 2010, pp. 155-157.
LINKS
J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae, 37 (2010), 151-164.
EXAMPLE
y=4.89536795554611347196719338722983584947273195280937244363084664929554121...
MATHEMATICA
x[t_] := (1 + 1/t)^t; y[t_] := (1 + 1/t)^(t + 1); t = t/. FindRoot[x[t]^y[t] == 17, {t, 1}, WorkingPrecision -> 120]; RealDigits[y[t], 10, 100] // First
CROSSREFS
Cf. A073226 (e^e), A194556 ((9/4)^(27/8) = (27/8)^(9/4)), A194557 (sqrt(3)^sqrt(27) = sqrt(27)^sqrt(3)), A194622 (x with 0 < x < y and x^y = y^x = 17).
Sequence in context: A368040 A117181 A328906 * A373642 A366022 A316251
KEYWORD
nonn,cons
AUTHOR
Jonathan Sondow, Aug 30 2011
STATUS
approved