Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 07 2018 14:53:28
%S 1,1,1,2,2,2,2,3,3,3,3,4,5,5,5,2,5,6,7,7,7,4,6,9,10,11,11,11,2,7,10,
%T 13,14,15,15,15,4,8,14,17,20,21,22,22,22,3,9,15,22,25,28,29,30,30,30,
%U 4,10,20,27,34,37,40,41,42,42,42,2,11,21,33,41,48,51,54,55,56,56,56
%N Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n in which any two parts differ by at most k.
%C T(n,k) = A000041(n) for n >= 0 and k >= n.
%H Alois P. Heinz, <a href="/A194621/b194621.txt">Rows n = 0..140, flattened</a>
%F G.f. of column k: 1 + Sum_{j>0} x^j / Product_{i=0..k} (1-x^(i+j)).
%e T(6,0) = 4: [6], [3,3], [2,2,2], [1,1,1,1,1,1].
%e T(6,1) = 6: [6], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
%e T(6,2) = 9: [6], [4,2], [3,1,1,1], [3,2,1], [3,3], [2,1,1,1,1], [2,2,1,1], [2,2,2], [1,1,1,1,1,1].
%e Triangle begins:
%e 1;
%e 1, 1;
%e 2, 2, 2;
%e 2, 3, 3, 3;
%e 3, 4, 5, 5, 5;
%e 2, 5, 6, 7, 7, 7;
%e 4, 6, 9, 10, 11, 11, 11;
%e 2, 7, 10, 13, 14, 15, 15, 15;
%p b:= proc(n, i, k) option remember;
%p if n<0 or k<0 then 0
%p elif n=0 then 1
%p elif i<1 then 0
%p else b(n, i-1, k-1) +b(n-i, i, k)
%p fi
%p end:
%p T:= (n, k)-> `if`(n=0, 1, 0) +add(b(n-i, i, k), i=1..n):
%p seq(seq(T(n, k), k=0..n), n=0..20);
%t b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, k-1] + b[n-i, i, k]]]]; t[n_, k_] := If[n == 0, 1, 0] + Sum[b[n-i, i, k], {i, 1, n}]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Dec 09 2013, translated from Maple *)
%Y Columns k=0-10 give (for n>0): A000005, A000027, A117142, A117143, A218506, A218507, A218508, A218509, A218510, A218511, A218512.
%Y Main diagonal gives: A000041.
%K nonn,tabl
%O 0,4
%A _Alois P. Heinz_, Aug 30 2011