[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126150 revision #2

A126150
Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301.
5
1, 1, 4, 1, 6, 24, 36, 24, 6, 96, 384, 636, 744, 636, 384, 96, 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976, 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416, 11449296, 45797184
OFFSET
0,3
FORMULA
Sum_{k=0,2n} (-1)^k*C(2n,k)*T(n,k) = (-6)^n.
EXAMPLE
Triangle begins:
1;
1, 4, 1;
6, 24, 36, 24, 6;
96, 384, 636, 744, 636, 384, 96;
2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;
151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...
If we write the triangle like this:
.......................... ....1;
................... ....1, ....4, ....1;
............ ....6, ...24, ...36, ...24, ....6;
..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;
.2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;
then the first term in each row is the sum of the previous row:
2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96
the next term is 4 times the first:
11904 = 4*2976,
and the remaining terms in each row are obtained by the rule
illustrated by:
20256 = 2*11904 - 2976 - 6*96 ;
26304 = 2*20256 - 11904 - 6*384 ;
28536 = 2*26304 - 20256 - 6*636 ;
26304 = 2*28536 - 26304 - 6*744 ;
20256 = 2*26304 - 28536 - 6*636 ;
11904 = 2*20256 - 26304 - 6*384 ;
2976 = 2*11904 - 20256 - 6*96.
An alternate recurrence is illustrated by:
11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);
20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);
26304 = 20256 + 3*(636 + 744 + 636);
28536 = 26304 + 3*(744);
and then for k>n, T(n,k) = T(n,2n-k).
PROG
(PARI) {T(n, k)=local(p=3); if(2*n<k|k<0, 0, if(n==0&k==0, 1, if(k==0, sum(j=0, 2*n-2, T(n-1, j)), if(k==1, (p+1)*T(n, 0), if(k<=n, 2*T(n, k-1)-T(n, k-2)-2*p*T(n-1, k-2), T(n, 2*n-k))))))} (PARI) /* Alternate Recurrence: */ {T(n, k)=local(p=3); if(2*n<k|k<0, 0, if(n==0&k==0, 1, if(k==0, sum(j=0, 2*n-2, T(n-1, j)), if(k<=n, T(n, k-1)+p*sum(j=k-1, 2*n-1-k, T(n-1, j)), T(n, 2*n-k)))))}
CROSSREFS
Cf. A126151 (column 0); diagonals: A126152, A126153; A126154; variants: A008301, A125053, A126155.
Sequence in context: A343599 A191714 A370356 * A374370 A364509 A349545
KEYWORD
nonn,tabl,new
AUTHOR
Paul D Hanna (pauldhanna(AT)juno.com), Dec 19 2006
STATUS
approved