Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jan 01 2024 11:07:23
%S 1,4,22,145,988,6766,46369,317812,2178310,14930353,102334156,
%T 701408734,4807526977,32951280100,225851433718,1548008755921,
%U 10610209857724,72723460248142,498454011879265,3416454622906708,23416728348467686
%N a(n) = Fibonacci(4n) + 1, or Fibonacci(2n-1)*Lucas(2n+1).
%C If x=a(n), y=a(n+1), z=a(n+2) or x=a(n+2), y=a(n+1), z=a(n), then x^2 -9*y*x +7*x*z +9*y^2 -9*z*y +z^2 = -45. - _Alexander Samokrutov_, Jul 02 2015
%D Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
%H Colin Barker, <a href="/A081002/b081002.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8,1).
%F a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
%F From _Paul Barry_, Jan 20 2005: (Start)
%F G.f.: (1-4*x-2*x^2)/(1-8*x+8*x^2-x^3).
%F a(n) = Sum_{k=0..n} binomial(2n-k, 2k)*2^(2n-3k).
%F a(n) = 1 - 0^n + Sum_{k=0..2n} binomial(4n-k-1, k). (End)
%p with(combinat): for n from 0 to 30 do printf(`%d,`,fibonacci(4*n)+1) od: # _James A. Sellers_, Mar 01 2003
%t Fibonacci[4*Range[0,30]]+1 (* or *) LinearRecurrence[{8,-8,1}, {1,4,22}, 30] (* _Harvey P. Dale_, Feb 26 2015 *)
%o (Magma) [Fibonacci(4*n)+1: n in [0..30]]; // _Vincenzo Librandi_, Apr 20 2011
%o (PARI) Vec((1-4*x-2*x^2)/((1-x)*(1-7*x+x^2)) + O(x^30)) \\ _Colin Barker_, Dec 23 2014
%o (Sage) [fibonacci(4*n)+1 for n in (0..30)] # _G. C. Greubel_, Jul 15 2019
%o (GAP) List([0..30], n-> Fibonacci(4*n)+1); # _G. C. Greubel_, Jul 15 2019
%Y Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
%K nonn,easy
%O 0,2
%A _R. K. Guy_, Mar 01 2003
%E More terms from _James A. Sellers_, Mar 01 2003