[go: up one dir, main page]

login
A373670
Numbers k such that the k-th run-length A110969(k) of the sequence of non-prime-powers (A024619) is different from all prior run-lengths.
12
1, 5, 7, 12, 18, 28, 40, 53, 71, 109, 170, 190, 198, 207, 236, 303, 394, 457, 606, 774, 1069, 1100, 1225, 1881, 1930, 1952, 2247, 2281, 3140, 3368, 3451, 3493, 3713, 3862, 4595, 4685, 6625, 8063, 8121, 8783, 12359, 12650, 14471, 14979, 15901, 17129, 19155
OFFSET
1,2
COMMENTS
The unsorted version is A373669.
EXAMPLE
The maximal runs of non-prime-powers begin:
1
6
10
12
14 15
18
20 21 22
24
26
28
30
33 34 35 36
38 39 40
42
44 45 46
48
50 51 52
54 55 56 57 58
60
So the a(n)-th runs begin:
1
14 15
20 21 22
33 34 35 36
54 55 56 57 58
MATHEMATICA
t=Length/@Split[Select[Range[10000], !PrimePowerQ[#]&], #1+1==#2&];
Select[Range[Length[t]], FreeQ[Take[t, #-1], t[[#]]]&]
CROSSREFS
For nonsquarefree runs we have A373199 (if increasing), firsts of A053797.
For squarefree antiruns see A373200, unsorted A373128, firsts of A373127.
For composite runs we have A373400, unsorted A073051, firsts of A176246.
For prime antiruns we have A373402.
For runs of non-prime-powers:
- length A110969, firsts A373669, sorted A373670 (this sequence):
- min A373676
- max A373677
- sum A373678
For runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
A000961 lists the powers of primes (including 1).
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers, without 1 A024619.
Sequence in context: A314311 A031144 A314312 * A160243 A373669 A247027
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 15 2024
STATUS
approved