[go: up one dir, main page]

login
A057820
First differences of sequence of consecutive prime powers (A000961).
101
1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
OFFSET
1,5
COMMENTS
a(n) = 1 iff A000961(n) = A006549(k) for some k. - Reinhard Zumkeller, Aug 25 2002
Also run lengths of distinct terms in A070198. - Reinhard Zumkeller, Mar 01 2012
Does this sequence contain all positive integers? - Gus Wiseman, Oct 09 2024
LINKS
FORMULA
a(n) = A000961(n+1) - A000961(n).
EXAMPLE
Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
MAPLE
A057820 := proc(n)
A000961(n+1)-A000961(n) ;
end proc: # R. J. Mathar, Sep 23 2016
MATHEMATICA
Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *)
Join[{1}, Differences[Select[Range[500], PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
PROG
(PARI) isA000961(n) = (omega(n) == 1 || n == 1)
n_prev=1; for(n=2, 500, if(isA000961(n), print(n-n_prev); n_prev=n)) \\ Michael B. Porter, Oct 30 2009
(Haskell)
a057820_list = zipWith (-) (tail a000961_list) a000961_list
-- Reinhard Zumkeller, Mar 01 2012
(Python)
from sympy import primepi, integer_nthroot
def A057820(n):
def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length())))
m, k = n, f(n)
while m != k: m, k = k, f(k)
r, k = m, f(m)+1
while r != k: r, k = k, f(k)+1
return r-m # Chai Wah Wu, Sep 12 2024
CROSSREFS
For perfect-powers (A001597) we have A053289.
For non-perfect-powers (A007916) we have A375706.
Positions of ones are A375734.
Run-compression is A376308.
Run-lengths are A376309.
Sorted positions of first appearances are A376340.
The second (instead of first) differences are A376596, zeros A376597.
Prime-powers:
- terms: A000961 or A246655, complement A024619
- differences: A057820 (this), first appearances A376341
- anti-runs: A373576, A120430, A006549, A373671
Non-prime-powers:
- terms: A361102
- differences: A375708 (ones A375713)
- anti-runs: A373679, A373575, A255346, A373672
Sequence in context: A205028 A325055 A325526 * A054012 A062083 A133114
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 08 2000
EXTENSIONS
Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012
STATUS
approved