[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109081
Reversion of x*(1-x)*(1-x^2)*(1-x^3)/(1-x^6) = x*(1-x)^2/(1-x+x^2).
25
1, 1, 3, 10, 37, 146, 602, 2563, 11181, 49720, 224540, 1027038, 4748042, 22150519, 104146733, 493012682, 2347796965, 11239697816, 54061835288, 261130778516, 1266125122956, 6160158505040, 30065608532008, 147161532388934
OFFSET
1,3
COMMENTS
From David Callan, Mar 30 2007: (Start)
a(n) is the number of vertex-labeled ordered trees (A000108) on n vertices, in which each non-leaf vertex is labeled with a positive integer <= its outdegree. Example. a(3)=3 counts the trees on 3 vertices with labels as shown (the 2 edges in each tree are shown, you have to visualize the vertices).
.
1 2 1
/ \ / \ |1
|
.
Proof. Let F(x) = x + x^2 + 3x^3 + ... denote the g.f. for these trees, with x marking number of vertices. Counting these trees by degree of the root leads to F = x + Sum_{k>=1} k*x*F^k, or F = x + x*F/(1-F)^2. This is the same equation as that satisfied by the reversion of x*(1-x)*(1-x^2)*(1-x^3)/(1-x^6) = x*(1-x)^2/(1-x+x^2). (End)
(1 + 3x + 10x^2 + ...) = (1 + 2x + 6x^2 + ...)*(1 + x + 2x^2 + 6x^3 + ...), where A106228 = (1, 1, 2, 6, 21, ...). - Gary W. Adamson, Nov 15 2011
Reversion of x/(1 + sum(k>=1, k*x^k )) (cf. A028310). - Joerg Arndt, Aug 19 2012
a(n) is the number of Motzkin paths of length 2n-3 with no downsteps in even position (n>=2). Example: a(3)=3 counts FFF, FUD, UFD, where U denotes an upstep (1,1), F a flatstep (1,0), and D a downstep (1,-1). - David Callan, May 20 2015
a(n) is the number of peakless Motzkin paths of length 2n-2 where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on 2n-2 vertices where only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021
LINKS
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
Tian-Xiao He and Louis W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra and its Applications, Volume 507, 15 October 2016, Pages 77-95. See R_2^{-}.
JiSun Huh, Sangwook Kim, Seunghyun Seo, and Heesung Shin, Bijections on pattern avoiding inversion sequences and related objects, arXiv:2404.04091 [math.CO], 2024. See p. 22.
Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From N. J. A. Sloane, Sep 25 2012
Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 11.
FORMULA
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = x*(1 - y + y^2) - y*(1 - y)^2.
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = y*(1 - y)*((1 - y) / x + 1) - 1.
From Paul D. Hanna, Jun 19 2009: (Start)
G.f. satisfies: A(x) = x/(1 - x/(1 - A(x))^2).
a(n) = Sum_{k=0..n} C(n,k)/(n-k+1) * C(n+k-1,n-k). (End)
From Gary W. Adamson, Nov 15 2011: (Start)
a(n) is the upper left term in M^(n-1), M = an infinite square matrix as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 2, 1, 1, 0, ...
4, 3, 2, 1, 1, ...
5, 4, 3, 2, 1, ...
... (End)
With different signs, g.f. = 2/(3-sqrt(1-4xC(x))) where C = g.f. for A000108 [He-Shapiro]. - N. J. A. Sloane, Apr 28 2017
From Vaclav Kotesovec, Aug 14 2018: (Start)
Recurrence: 2*n*(2*n - 1)*(19*n^2 - 85*n + 90)*a(n) = 2*(190*n^4 - 1230*n^3 + 2783*n^2 - 2595*n + 828)*a(n-1) + 2*(n-3)*(38*n^3 - 189*n^2 + 289*n - 132)*a(n-2) + 3*(n-4)*(n-3)*(19*n^2 - 47*n + 24)*a(n-3).
a(n) ~ (1 - (1-s)*s)^(n + 1/2) / (2*sqrt(Pi*(3 - 6*s + s^2)) * n^(3/2) * s^n * (1-s)^(2*n-2)), where s = 0.3611030805286473776346465621590281395264149... is the real root of the equation (s^2 - s + 3)*s = 1. (End)
EXAMPLE
a(5) = 37 = the upper left term of M^4: (37, 26, 12, 4, 1); where (37 + 26 + 12 + 4 + 1) = 80 = A106228(5). - Gary W. Adamson, Nov 15 2011
G.f. = x + x^2 + 3*x^3 + 10*x^4 + 37*x^5 + 146*x^6 + 602*x^7 + 2563*x^8 + ...
MAPLE
S:= series(RootOf(-x*z^2+z^3+x*z-2*z^2-x+z, z), x, 101):
seq(coeff(S, x, j), j=1..100); # Robert Israel, Nov 19 2015
MATHEMATICA
a[ n_] := If[ n < 2, Boole[n == 1], (n - 1) HypergeometricPFQ[ {n, 1 - n, 2 - n}, {3/2, 2}, 1/4]]; (* Michael Somos, May 28 2014 *)
Join[{1}, Table[Sum[ Binomial[n, k] / (n-k+1) Binomial[n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( x * (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) + x * O(x^n)), n))};
(PARI) {a(n)=sum(k=0, n, binomial(n, k)/(n-k+1)*binomial(n+k-1, n-k))} \\ Paul D. Hanna, Jun 19 2009
(Sage)
def A109081(n) :
return (n-1)*hypergeometric([n, 1-n, 2-n], [3/2, 2], 1/4) if n > 1 else 1
[simplify(A109081(n)) for n in (1..24)] # Peter Luschny, Aug 02 2012, Nov 13 2014
(Magma) [&+[Binomial(n, k)/(n-k+1)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 17 2005
STATUS
approved