[go: up one dir, main page]

login
A326080
Number of subsets of {1..n} containing the sum of every subset whose sum is <= n.
42
1, 2, 4, 7, 12, 19, 31, 47, 73, 110, 168, 247, 375, 546, 817, 1193, 1769, 2552, 3791, 5445, 8012, 11517, 16899, 24144, 35391, 50427, 73614, 104984, 152656, 216802, 315689, 447473, 648813, 920163, 1332991, 1884735, 2728020, 3853437, 5568644, 7868096, 11347437
OFFSET
0,2
COMMENTS
Equivalently, a(n) is the number of subsets of {1..n} containing the sum of any two distinct elements whose sum is <= n.
The summands must be distinct. The case where they are allowed to be equal is A326083.
If A151897 counts sum-free sets, this sequence counts sum-closed sets. This is different from sum-full sets (A093971).
EXAMPLE
The a(0) = 1 through a(5) = 19 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{1,2} {3} {3} {3}
{1,3} {4} {4}
{2,3} {1,4} {5}
{1,2,3} {2,3} {1,5}
{2,4} {2,4}
{3,4} {2,5}
{1,3,4} {3,4}
{2,3,4} {3,5}
{1,2,3,4} {4,5}
{1,4,5}
{2,3,5}
{2,4,5}
{3,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The a(6) = 31 subsets:
{} {1} {1,6} {1,5,6} {1,4,5,6} {1,3,4,5,6} {1,2,3,4,5,6}
{2} {2,5} {2,3,5} {2,3,5,6} {2,3,4,5,6}
{3} {2,6} {2,4,6} {2,4,5,6}
{4} {3,4} {2,5,6} {3,4,5,6}
{5} {3,5} {3,4,5}
{6} {3,6} {3,4,6}
{4,5} {3,5,6}
{4,6} {4,5,6}
{5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], SubsetQ[#, Select[Plus@@@Subsets[#, {2}], #<=n&]]&]], {n, 0, 10}]
PROG
(PARI)
a(n)={
my(recurse(k, b)=
if( k > n, 1,
my(t=self()(k + 1, b + (1<<k)));
for(i=1, (k-1)\2, if(bittest(b, i) && bittest(b, k-i), return(t)));
t + self()(k + 1, b) )
);
recurse(1, 0);
} \\ Andrew Howroyd, Aug 30 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 30 2019
STATUS
approved