[go: up one dir, main page]

login
A364534
Number of subsets of {1..n} containing some element equal to the sum of two or more distinct other elements. A variation of sum-full subsets without re-used elements.
52
0, 0, 0, 1, 3, 10, 27, 68, 156, 357, 775, 1667, 3505, 7303, 15019, 30759, 62489, 126619, 255542, 514721, 1034425, 2076924, 4164650, 8346306, 16715847, 33467324, 66982798, 134040148, 268179417, 536510608, 1073226084, 2146759579, 4293930436, 8588485846, 17177799658
OFFSET
0,5
LINKS
FORMULA
a(n) = 2^n - A151897(n). - Andrew Howroyd, Jan 27 2024
EXAMPLE
The a(0) = 0 through a(5) = 10 subsets:
. . . {1,2,3} {1,2,3} {1,2,3}
{1,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 10}]
CROSSREFS
The binary version is A088809, complement A085489.
The complement is counted by A151897.
The complement for partitions is A237667, ranks A364531.
For partitions we have A237668, ranks A364532.
For strict partitions we have A364272, complement A364349.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
Sequence in context: A100624 A320586 A088809 * A069229 A316587 A309300
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 02 2023
EXTENSIONS
a(16)-a(25) from Chai Wah Wu, Nov 14 2023
a(26) onwards (using A151897) added by Andrew Howroyd, Jan 27 2024
STATUS
approved