[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341286
Numbers k such that k plus the sum of the fifth powers of the digits of k is a cube.
0
0, 2435, 3403, 5625, 8781, 11140, 22664, 23325, 32908, 33346, 34822, 41332, 58555, 99180, 103925, 109272, 133118, 136386, 145263, 170740, 180105, 182142, 194261, 207459, 208813, 228224, 249945, 251991, 266080, 305840, 341539, 351824, 359720, 372287, 380064, 415434
OFFSET
1,2
EXAMPLE
2435 is a term since 2435 + 2^5 + 4^5 + 3^5 + 5^5 = 19^3;
3403 is a term since 3403 + 3^5 + 4^5 + 0^5 + 3^5 = 17^3.
MAPLE
filter:= proc(n) local x, d;
x:= n + add(d^5, d = convert(n, base, 10));
surd(x, 3)::integer
end proc:
select(filter, [$0..10^5]); # Robert Israel, Feb 09 2021
MATHEMATICA
Select[Range[0, 500000], IntegerQ@ Power[# + Total[IntegerDigits[#]^5], 1/3] &] (* Michael De Vlieger, Feb 22 2021 *)
Select[Range[0, 416000], IntegerQ[Surd[#+Total[IntegerDigits[#]^5], 3]]&] (* Harvey P. Dale, Jul 19 2022 *)
PROG
(PARI) isok(k) = ispower(k+vecsum(apply(x->x^5, digits(k))), 3); \\ Michel Marcus, Feb 09 2021
(Python)
from sympy import integer_nthroot
def powsum(n): return sum(int(d)**5 for d in str(n))
def ok(n): return integer_nthroot(n + powsum(n), 3)[1]
def aupto(lim):
alst = []
for k in range(lim+1):
if ok(k): alst.append(k)
return alst
print(aupto(415434)) # Michael S. Branicky, Feb 22 2021
CROSSREFS
Cf. A055014 (sum of 5th powers of digits).
Sequence in context: A147984 A229871 A192767 * A250710 A278196 A032734
KEYWORD
base,nonn,less
AUTHOR
Will Gosnell, Feb 08 2021
EXTENSIONS
More terms from Michel Marcus, Feb 09 2021
a(1)=0 prepended by Michael S. Branicky, Feb 22 2021
STATUS
approved