[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032734
All 81 combinations of prefixing and following a(n) by a single digit are nonprime.
7
2437, 5620, 7358, 11111, 13308, 13332, 13650, 14612, 19737, 19817, 24217, 25213, 26302, 27971, 28472, 28838, 29289, 29542, 29650, 31328, 33027, 33170, 35914, 35970, 36186, 37977, 38327, 39127, 39608, 40078, 41165, 41528, 42422, 43277, 44657, 45649, 47172, 47382
OFFSET
1,1
EXAMPLE
2437 prefixed and followed with a pair of digits from (1,2,3,4,5,6,7,8,9) never yields a prime, e.g., '9'2437'1' = 7 * 37 * 43 * 83.
MAPLE
isA032734 := proc(n)
for k from 1 to 9 do
for k2 from 1 to 9 do
dgs := [k, op(convert(n, base, 10)), k2] ;
dgsn := add( op(i, dgs)*10^(i-1), i=1..nops(dgs)) ;
if isprime(dgsn) then
return false;
end if;
end do:
end do:
return true;
end proc:
for n from 1 to 50000 do
if isA032734(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Oct 22 2011
filter:= proc(n) local d, i, j;
d:= 10^(ilog10(n)+2);
not ormap(isprime, [seq(seq(d*i+10*n+j, j=[1, 3, 5, 7, 9]), i=1..9)])
end proc:
select(filter, [$1..10^5]); # Robert Israel, Jul 07 2016
MATHEMATICA
ok[n_] := With[{id = IntegerDigits[n]}, Select[ Flatten[ Table[ FromDigits[ Join[{j}, id, {k}]], {j, 1, 9}, {k, 1, 9}], 1], PrimeQ, 1] == {}]; A032734 = {}; n = 1; While[n < 50000, If[ok[n], Print[n]; AppendTo[A032734, n]]; n++]; A032734(* Jean-François Alcover, Nov 23 2011 *)
Select[Range[50000], NoneTrue[Flatten[Table[FromDigits[Join[{x}, IntegerDigits[ #], {y}]], {x, 9}, {y, 9}]], PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 07 2018 *)
PROG
(PARI) is_A032734(n)=p=10^#Str(n*=10); forstep(k=n+p, n+9*p, p, nextprime(k)>k+9 || return); 1 \\ M. F. Hasler, Oct 22 2011
(Python)
from sympy import isprime
def ok(n):
s, fdigs, edigs = str(n), "123456789", "1379"
return not any(isprime(int(f+s+e)) for f in fdigs for e in edigs)
print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 05 2022
CROSSREFS
KEYWORD
nonn,nice,base
AUTHOR
Patrick De Geest, May 15 1998
STATUS
approved