Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jul 19 2022 16:20:50
%S 0,2435,3403,5625,8781,11140,22664,23325,32908,33346,34822,41332,
%T 58555,99180,103925,109272,133118,136386,145263,170740,180105,182142,
%U 194261,207459,208813,228224,249945,251991,266080,305840,341539,351824,359720,372287,380064,415434
%N Numbers k such that k plus the sum of the fifth powers of the digits of k is a cube.
%e 2435 is a term since 2435 + 2^5 + 4^5 + 3^5 + 5^5 = 19^3;
%e 3403 is a term since 3403 + 3^5 + 4^5 + 0^5 + 3^5 = 17^3.
%p filter:= proc(n) local x, d;
%p x:= n + add(d^5, d = convert(n, base, 10));
%p surd(x, 3)::integer
%p end proc:
%p select(filter, [$0..10^5]); # _Robert Israel_, Feb 09 2021
%t Select[Range[0, 500000], IntegerQ@ Power[# + Total[IntegerDigits[#]^5], 1/3] &] (* _Michael De Vlieger_, Feb 22 2021 *)
%t Select[Range[0,416000],IntegerQ[Surd[#+Total[IntegerDigits[#]^5],3]]&] (* _Harvey P. Dale_, Jul 19 2022 *)
%o (PARI) isok(k) = ispower(k+vecsum(apply(x->x^5, digits(k))), 3); \\ _Michel Marcus_, Feb 09 2021
%o (Python)
%o from sympy import integer_nthroot
%o def powsum(n): return sum(int(d)**5 for d in str(n))
%o def ok(n): return integer_nthroot(n + powsum(n), 3)[1]
%o def aupto(lim):
%o alst = []
%o for k in range(lim+1):
%o if ok(k): alst.append(k)
%o return alst
%o print(aupto(415434)) # _Michael S. Branicky_, Feb 22 2021
%Y Cf. A055014 (sum of 5th powers of digits).
%K base,nonn,less
%O 1,2
%A _Will Gosnell_, Feb 08 2021
%E More terms from _Michel Marcus_, Feb 09 2021
%E a(1)=0 prepended by _Michael S. Branicky_, Feb 22 2021