OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
FORMULA
a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021
EXAMPLE
The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
4 8 16 24 32 64 72 96
2*2 2*4 2*8 4*6 4*8 8*8 2*36 2*48
2*2*2 4*4 2*12 2*16 2*32 4*18 4*24
2*2*4 2*2*6 2*2*8 4*16 6*12 6*16
2*2*2*2 2*4*4 2*4*8 2*6*6 8*12
2*2*2*4 4*4*4 2*2*18 2*6*8
2*2*2*2*2 2*2*16 4*4*6
2*2*2*8 2*2*24
2*2*4*4 2*4*12
2*2*2*2*4 2*2*4*6
2*2*2*2*2*2 2*2*2*12
2*2*2*2*6
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[#, OddQ]=={}&]], {n, 2, 100, 2}]
PROG
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A340653 counts balanced factorizations.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A236913 counts partitions of even length and sum.
Even bisection of A349906.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 30 2021
STATUS
approved