[go: up one dir, main page]

login
A340785
Number of factorizations of 2n into even factors > 1.
15
1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
OFFSET
1,2
LINKS
FORMULA
a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021
EXAMPLE
The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
4 8 16 24 32 64 72 96
2*2 2*4 2*8 4*6 4*8 8*8 2*36 2*48
2*2*2 4*4 2*12 2*16 2*32 4*18 4*24
2*2*4 2*2*6 2*2*8 4*16 6*12 6*16
2*2*2*2 2*4*4 2*4*8 2*6*6 8*12
2*2*2*4 4*4*4 2*2*18 2*6*8
2*2*2*2*2 2*2*16 4*4*6
2*2*2*8 2*2*24
2*2*4*4 2*4*12
2*2*2*2*4 2*2*4*6
2*2*2*2*2*2 2*2*2*12
2*2*2*2*6
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[#, OddQ]=={}&]], {n, 2, 100, 2}]
PROG
(PARI)
A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.
Sequence in context: A105609 A268361 A330569 * A355758 A206778 A101872
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 30 2021
STATUS
approved