[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349783
a(n) = Sum_{j=0..n} |Stirling1(2*n, j)|.
2
1, 1, 17, 619, 38009, 3555161, 475971957, 87025015687, 20913570481057, 6401730410889889, 2432850898346888777, 1123996170986262914979, 620447951124750866054313, 403291412174732586716167529, 304888338816008019564815376029, 265252859069372498997243448483215
OFFSET
0,3
FORMULA
a(n) = Sum_{j=0..n} A132393(2n,j). - Alois P. Heinz, Dec 10 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0,
add(b(n-j, k-1)*binomial(n-1, j-1)*(j-1)!, j=1..n)))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..15); # Alois P. Heinz, Dec 09 2021
MATHEMATICA
a[n_] := Sum[Abs[StirlingS1[2*n, j]], {j, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, Dec 09 2021 *)
PROG
(PARI) a(n) = sum(j=0, n, abs(stirling(2*n, j, 1))); \\ Michel Marcus, Dec 09 2021
(Python)
from sympy.functions.combinatorial.numbers import stirling
def A349783(n): return sum(abs(stirling(2*n, j, kind=1)) for j in range(n+1)) # Chai Wah Wu, Dec 09 2021
CROSSREFS
Central terms of A349782.
Cf. A132393.
Sequence in context: A219090 A222615 A012219 * A219075 A265678 A200907
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 09 2021
STATUS
approved