[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349782
Triangle read by rows, T(n, k) = Sum_{j=0..k} |Stirling1(n, j)|.
1
1, 0, 1, 0, 1, 2, 0, 2, 5, 6, 0, 6, 17, 23, 24, 0, 24, 74, 109, 119, 120, 0, 120, 394, 619, 704, 719, 720, 0, 720, 2484, 4108, 4843, 5018, 5039, 5040, 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320, 0, 40320, 149904, 268028, 335312, 357761, 362297, 362843, 362879, 362880
OFFSET
0,6
COMMENTS
T(n, k) is the number of permutations of n objects that contain at most k cycles.
FORMULA
T(n,k) = Sum_{j=0..k} A132393(n,j). - Alois P. Heinz, Dec 10 2021
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 2;
[3] 0, 2, 5, 6;
[4] 0, 6, 17, 23, 24;
[5] 0, 24, 74, 109, 119, 120;
[6] 0, 120, 394, 619, 704, 719, 720;
[7] 0, 720, 2484, 4108, 4843, 5018, 5039, 5040;
[8] 0, 5040, 18108, 31240, 38009, 39969, 40291, 40319, 40320;
MAPLE
T := (n, k) -> add(abs(Stirling1(n, j)), j = 0..k):
seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := Sum[Abs[StirlingS1[n, j]], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 09 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, k, abs(stirling(n, j, 1))); \\ Michel Marcus, Dec 09 2021
CROSSREFS
Row sums: A121586, central terms: A349783.
Sequence in context: A301951 A144529 A319498 * A011297 A110282 A024308
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 02 2021
STATUS
approved