[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320179
Regular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k.
9
1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 3, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 0, 1, 7, 1, 0, 0, 0, 0, 0, 0, 1, 11, 4, 0, 0, 0, 0, 0, 0, 0, 1, 13, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 23, 23, 0, 0, 0
OFFSET
1,18
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
EXAMPLE
Triangle begins:
1
0 1
0 1 0
0 1 1 0
0 1 1 0 0
0 1 3 0 0 0
0 1 3 0 0 0 0
0 1 6 1 0 0 0 0
0 1 7 1 0 0 0 0 0
0 1 11 4 0 0 0 0 0 0
0 1 13 6 0 0 0 0 0 0 0
0 1 20 16 0 0 0 0 0 0 0 0
0 1 23 23 0 0 0 0 0 0 0 0 0
0 1 33 46 0 0 0 0 0 0 0 0 0 0
The T(10,3) = 4 rooted trees:
(((oo)(oo))((oo)(oooo)))
(((oo)(oo))((ooo)(ooo)))
(((oo)(ooo))((oo)(ooo)))
(((oo)(oo))((oo)(oo)(oo)))
MATHEMATICA
qurt[n_]:=If[n==1, {{}}, Join@@Table[Union[Sort/@Tuples[qurt/@ptn]], {ptn, Select[IntegerPartitions[n], Length[#]>1&]}]];
Table[Length[Select[qurt[n], SameQ[##, k]&@@Length/@Position[#, {}]&]], {n, 14}, {k, 0, n-1}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); vector(n, n, Vecrev(v[n], n))}
{ my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020
CROSSREFS
Row sums are A120803. Third column is A083751. An irregular version is A320221.
Sequence in context: A111417 A007271 A327449 * A035656 A325675 A374203
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Oct 07 2018
STATUS
approved