[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120803
Number of series-reduced balanced trees with n leaves.
17
1, 1, 1, 2, 2, 4, 4, 8, 9, 16, 20, 37, 47, 80, 111, 183, 256, 413, 591, 940, 1373, 2159, 3214, 5067, 7649, 12054, 18488, 29203, 45237, 71566, 111658, 176710, 276870, 437820, 687354, 1085577, 1705080, 2688285, 4221333, 6644088, 10425748
OFFSET
1,4
COMMENTS
In other words, rooted trees with all leaves at the same level and no node having exactly one child; the order of children is not significant.
LINKS
FORMULA
Let s_0(n) = 1 if n = 1, 0 otherwise; s_{k+1}(n) = EULER(s_k)(n) - s_k(n), where EULER is the Euler transform. Then a_n = sum_k s_k(n). (s_k(n) is the number of such trees of height k.) Note that s_k(n) = 0 for n < 2^k.
EXAMPLE
From Gus Wiseman, Oct 07 2018: (Start)
The a(10) = 16 series-reduced balanced rooted trees:
(oooooooooo)
((ooooo)(ooooo))
((oooo)(oooooo))
((ooo)(ooooooo))
((oo)(oooooooo))
((ooo)(ooo)(oooo))
((oo)(oooo)(oooo))
((oo)(ooo)(ooooo))
((oo)(oo)(oooooo))
((oo)(oo)(ooo)(ooo))
((oo)(oo)(oo)(oooo))
((oo)(oo)(oo)(oo)(oo))
(((oo)(ooo))((oo)(ooo)))
(((oo)(oo))((ooo)(ooo)))
(((oo)(oo))((oo)(oooo)))
(((oo)(oo))((oo)(oo)(oo)))
(End)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(u=vector(n), v=vector(n)); u[1]=1; while(u, v+=u; u=EulerT(u)-u); v} \\ Andrew Howroyd, Oct 26 2018
KEYWORD
nonn
AUTHOR
STATUS
approved